Americas
Europe
68GP
Expert-verified
A \(0.650\;{\rm{kg}}\) mass oscillates according to the equation \(x = 0.25\sin \left( {4.70\;{\rm{t}}} \right)\) where \({\rm{x}}\) is in meters and \({\rm{t}}\) is in seconds. Determine (a) the amplitude, (b) the frequency, (c) the period, (d) the total energy, and (e) the kinetic energy and potential energy when \({\rm{x}}\) is 15 cm
(a) The amplitude of oscillation is \(0.25\;{\rm{m}}\).
(b) The frequency is \(0.75\;{\rm{Hz}}\).
(c) The period is \(1.34\;{\rm{s}}\).
(d) The total energy is \(0.45\;{\rm{J}}\).
(e) The kinetic energy and potential energy of the mass is \(0.29\;{\rm{J}}\) and \(0.16\;{\rm{J}}\).
In this problem, the kinetic energy and potential energy are determined by applying the principle of conservation of total energy.
The displacement equation for SHM is \(x = 0.25\sin \left( {4.70t} \right)\).
The time is \(t\).
The mass is \({\rm{m}} = 0.650\;{\rm{kg}}\).
The amplitude of the oscillation will be equivalent to the maximum displacement. So, the amplitude is calculated as:
\(\begin{aligned}{c}A &= {x_{{\rm{max}}}}\\ &= 0.25\;{\rm{m}}\end{aligned}\)
Hence, amplitude of the mass is \(0.25\;{\rm{m}}\).
The frequency of oscillation is calculated as:
\(f = \frac{\omega }{{2{\rm{\pi }}}}\)
Substitute the values in the above relation.
\(\begin{aligned}{c}f = \frac{{4.70\;{{\rm{s}}^{ - 1}}}}{{2{\rm{\pi }}}}\\f = 0.748\;{\rm{Hz}}\end{aligned}\)
Hence, the frequency of oscillation is 0.748 Hz
The period is calculated as:
\(T = \frac{1}{f}\)
Substitute the values in the above relation.
\(\begin{aligned}{c}T = \frac{1}{{0.748\;{\rm{Hz}}}}\\T = 1.34\;{\rm{s}}\end{aligned}\)
Hence, the period of oscillation is 1.34 s.
The total energy is calculated as:
\({{\rm{E}}_{\rm{T}}} = \frac{1}{2}{\rm{mv}}_{{\rm{max}}}^{\rm{2}}\)
Substitute the values in the above relation.
\begin{aligned}{c}{E_{\rm{T}}} &= \frac{1}{2}m{\left( {\omega A} \right)^2}\\{E_{\rm{T}}} &= \frac{1}{2}\left( {0.65\;{\rm{kg}}} \right){\left( {4.70\;{{\rm{s}}^{ - 1}}} \right)^2}{\left( {0.25\;{\rm{m}}} \right)^2}\\{E_{\rm{T}}} &= 0.45\;{\rm{J}}\end{aligned}
Hence, total energy of the mass is \(0.45\;{\rm{J}}\).
According to the conservation of energy, total energy remains constant.
The potential energy is calculated as:
\begin{aligned}{c}PE &= \frac{1}{2}k{x^2}\\ &= \frac{1}{2}m{\left( {\omega x} \right)^2}\\ &= \frac{1}{2}\left( {0.65\;{\rm{kg}}} \right){\left( {4.70\;{{\rm{s}}^{ - 1}}} \right)^2}{\left( {0.15\;{\rm{m}}} \right)^2}\\ &= 0.16\;{\rm{J}}\end{aligned}
The kinetic energy is calculated as:
\begin{aligned}KE &= {E_{\rm{T}}} - PE\\ &= 0.45\;{\rm{J}} - {\rm{0}}{\rm{.16}}\;{\rm{J}}\\ &= 0.29\;{\rm{J}}\end{aligned}
Hence, potential and kinetic energy of the mass is \(0.16\;{\rm{J}}\) and \(0.29\;{\rm{J}}\), respectively.
94% of StudySmarter users get better grades.
Sign up for free