Americas
Europe
Q22Q
Expert-verified(a) How many seconds are there in 1.00 year? (b) How many nanoseconds are there in 1.00 year? (c) How many years are there in 1.00 second?
(a) The number of seconds in a year is \(3.15 \times {10^7}\;{\rm{s}}\). (b) The number of nanoseconds in a year is \({\rm{3}}{\rm{.15}} \times {\rm{1}}{{\rm{0}}^{16}}\;{\rm{ns}}\). (c) The number of years in one second is \({\rm{3}}{\rm{.17}} \times {\rm{1}}{{\rm{0}}^{ - 8}}\;{\rm{years}}\).
The types of unit conversion are as follows:
Convert the unit of time from years to seconds.
\(\begin{aligned}{l}T = \left( {{\rm{1}}\;{\rm{year}}} \right)\left( {\frac{{{\rm{365}}\;{\rm{days}}}}{{{\rm{1}}\;{\rm{year}}}}} \right)\left( {\frac{{{\rm{24}}\;{\rm{hours}}}}{{{\rm{1}}\;{\rm{day}}}}} \right)\left( {\frac{{{\rm{60}}\;{\rm{min}}}}{{{\rm{1}}\;{\rm{hour}}}}} \right)\left( {\frac{{{\rm{60}}\;{\rm{s}}}}{{{\rm{1}}\;{\rm{min}}}}} \right)\\T \approx 3.15 \times {10^7}\;{\rm{s}}\end{aligned}\).
Thus, there are \(3.15 \times {10^7}\;{\rm{s}}\) in one year.
Convert the unit of time from years to nanoseconds.
\(\begin{aligned}{l}T = \left( {{\rm{1}}\;{\rm{year}}} \right)\left( {\frac{{{\rm{365}}\;{\rm{days}}}}{{{\rm{1}}\;{\rm{year}}}}} \right)\left( {\frac{{{\rm{24}}\;{\rm{hours}}}}{{{\rm{1}}\;{\rm{day}}}}} \right)\left( {\frac{{{\rm{60}}\;{\rm{min}}}}{{{\rm{1}}\;{\rm{hour}}}}} \right)\left( {\frac{{{\rm{60}}\;{\rm{s}}}}{{{\rm{1}}\;{\rm{min}}}}} \right)\left( {\frac{{{\rm{1}}\;{\rm{ns}}}}{{{\rm{1}}{{\rm{0}}^{{\rm{ - 9}}}}\;{\rm{s}}}}} \right)\\T \approx 3.15 \times {10^{16}}\;{\rm{ns}}\end{aligned}\).
Thus, there are \(3.15 \times {10^{16}}\;{\rm{ns}}\) in one year.
Convert the unit of time from seconds to years.
\(\begin{aligned}{l}T = \left( {1\;{\rm{s}}} \right)\left( {\frac{{1\;\min }}{{60\;{\rm{s}}}}} \right)\left( {\frac{{{\rm{1}}\;{\rm{hour}}}}{{{\rm{60}}\;{\rm{min}}}}} \right)\left( {\frac{{{\rm{1}}\;{\rm{day}}}}{{{\rm{24}}\;{\rm{hours}}}}} \right)\left( {\frac{{{\rm{1}}\;{\rm{year}}}}{{{\rm{365}}\;{\rm{days}}}}} \right)\\T \approx 3.17 \times {10^{ - 8}}\;{\rm{years}}\end{aligned}\).
Thus, there are \(3.17 \times {10^{ - 8}}\;{\rm{years}}\) in one second.
94% of StudySmarter users get better grades.
Sign up for free