Suggested languages for you:

Americas

Europe

Q49.

Expert-verifiedFound in: Page 689

Book edition
7th Edition

Author(s)
James Stewart, Lothar Redlin, Saleem Watson

Pages
948 pages

ISBN
9781337067508

**Solve the system, or show that it has no solution. If the system has infinitely many solutions,**

**express them in the ordered-pair form given in Example 6.**

** $\begin{array}{l}\frac{1}{3}x-\frac{1}{4}y=2\\ -8x+6y=10\end{array}$**

Hence, the solution of the system of equations $\begin{array}{l}\frac{1}{3}x-\frac{1}{4}y=2\\ -8x+6y=10\end{array}$ has **no solution** hence **inconsistent**.

Given a system of equations $\begin{array}{l}\frac{1}{3}x-\frac{1}{4}y=2\\ -8x+6y=10\end{array}$

substitution method.

Given equation,

$\frac{1}{3}x-\frac{1}{4}y=2$ …….(1)

**$-8x+6y=10$ **…….(2)

We are solving equation (1) for x,

$x=3\left(2+\frac{1}{4}y\right)$ ……..(3)

We are substituting equation (3) in equation (2),

$\begin{array}{l}-8\left(6+\frac{3}{4}y\right)+6y=10\\ -48-6y+6y=10\end{array}$Since, this is false so the system is inconsistent, i.e. no solution.

94% of StudySmarter users get better grades.

Sign up for free