### Select your language

Suggested languages for you:

Americas

Europe

Q49.

Expert-verified
Found in: Page 689

### Precalculus Mathematics for Calculus

Book edition 7th Edition
Author(s) James Stewart, Lothar Redlin, Saleem Watson
Pages 948 pages
ISBN 9781337067508

# Solve the system, or show that it has no solution. If the system has infinitely many solutions,express them in the ordered-pair form given in Example 6. $\begin{array}{l}\frac{1}{3}x-\frac{1}{4}y=2\\ -8x+6y=10\end{array}$

Hence, the solution of the system of equations $\begin{array}{l}\frac{1}{3}x-\frac{1}{4}y=2\\ -8x+6y=10\end{array}$ has no solution hence inconsistent.

See the step by step solution

## Step 1. Given information.

Given a system of equations $\begin{array}{l}\frac{1}{3}x-\frac{1}{4}y=2\\ -8x+6y=10\end{array}$

substitution method.

## Step 2. Write down the concept.

Given equation,

$\frac{1}{3}x-\frac{1}{4}y=2$ …….(1)

$-8x+6y=10$ …….(2)

We are solving equation (1) for x,

$x=3\left(2+\frac{1}{4}y\right)$ ……..(3)

## Step 3. Determining the angle

We are substituting equation (3) in equation (2),

$\begin{array}{l}-8\left(6+\frac{3}{4}y\right)+6y=10\\ -48-6y+6y=10\end{array}$

Since, this is false so the system is inconsistent, i.e. no solution.