Suggested languages for you:

Americas

Europe

Q30.

Expert-verifiedFound in: Page 133

Book edition
Common Core Edition

Author(s)
Ron Larson, Laurie Boswell, Timothy D. Kanold, Lee Stiff

Pages
183 pages

ISBN
9780547587776

**Find the perimeter of the square.**

The required perimeter of the square is 288

Given two sides of the square are $9x$ and $5x+32$.

We have to find the perimeter of the square.

We know that each sides of a square are equal.

So, $9x=5x+32$

Then we solve the equation:

$\begin{array}{l}9x=5x+32\text{write the equation}\\ 9x-5x=32+5x-5x\text{subtract 5x from both sides}\\ 4x=32\text{simplify}\\ \frac{4x}{4}=\frac{32}{4}\text{divide each side by 4}\\ x=8\text{simplify}\end{array}$Substituting the value of *x* in the expression of a side = $9x$ we get:

$\begin{array}{l}9x\\ =9\times 8\text{Substitute the value of}x\text{}\\ \text{=72 Multiply}\end{array}$

So the length of each side = 72

Hence,

$\begin{array}{l}\text{Perimeter}\left(P\right)=4\times \text{each side of the sqaure}\\ \text{Perimeter}\left(P\right)=\text{4}\times 72\text{Substitute the value in the formula}\\ \text{Perimeter}\left(P\right)=288\text{units Multiply}\end{array}$

Therefore, $\text{Perimeter}\left(P\right)=288$

94% of StudySmarter users get better grades.

Sign up for free