Open in App
Log In Start studying!

Select your language

Suggested languages for you:

Problem 7

Consider a model for the "shopping cart" shown in Figure 4.2 ("knife-edge" or "unicycle" are other names for this example). The state is given by the orientation \(\theta\), together with the coordinates \(x_{1}, x_{2}\) of the midpoint between the back wheels. Figure 4.2: Shopping cart. The front wheel is a castor, free to rotate. There is a non-slipping constraint on movement: the velocity $\left(\dot{x}_{1}, \dot{x}_{2}\right)^{\prime}\( must be parallel to the vector \)(\cos \theta, \sin \theta)^{\prime} .$ This leads to the following equations: $$ \begin{aligned} \dot{x}_{1} &=u_{1} \cos \theta \\ \dot{x}_{2} &=u_{1} \sin \theta \\ \dot{\theta} &=u_{2} \end{aligned} $$ where we may view \(u_{1}\) as a "drive" command and \(u_{2}\) as a steering control (in practice, we implement these controls by means of differential forces on the two back corners of the cart). We view the system as having state space \(\mathbb{R}^{3}\) (a more accurate state space would be the manifold \(\mathbb{R}^{2} \times \mathbb{S}^{1}\) ). (a) Show that the system is completely controllable. (b) Consider these new variables: $z_{1}:=\theta, z_{2}:=x_{1} \cos \theta+x_{2} \sin \theta, z_{3}:=\( \)x_{1} \sin \theta-x_{2} \cos \theta, v_{1}:=u_{2}\(, and \)v_{2}:=u_{1}-u_{2} z_{3}$. (Such a change of variables is called a "feedback transformation".) Write the system in these variables, as \(\dot{z}=\widetilde{f}(z, v) .\) Note that this is one of the systems \(\Sigma_{i}\) in Exercise 4.3.14. Explain why controllability can then be deduced from what you already concluded in that previous exercise.

Problem 8

A distribution on the open subset \(\mathcal{O} \subseteq \mathbb{R}^{n}\) is a map \(\Delta\) which assigns, to each \(x \in \mathcal{O}\), a subspace \(\Delta(x)\) of \(\mathbb{R}^{n}\). A vector field $f \in \mathbb{V}(\mathcal{O})\( is pointwise in \)\Delta\(, denoted \)f \in_{p} \Delta$, if \(f(x) \in \Delta(x)\) for all \(x \in \mathcal{O}\). A distribution is invariant under a vector field \(f \in \mathbb{V}(\mathcal{O})\) if $$ g \in_{p} \Delta \Rightarrow[f, g] \in_{p} \Delta, $$ and it is involutive if it is invariant under all \(f \in_{p} \Delta\), that is, it is pointwise closed under Lie brackets: $$ f \in_{p} \Delta \text { and } g \in_{p} \Delta \quad \Rightarrow \quad[f, g] \in_{p} \Delta . $$ The distribution generated by a set of vector fields $f_{1}, \ldots, f_{r} \in \mathrm{V}(\mathcal{O})\( is defined \)b y$ $$ \Delta_{f_{1}, \ldots, f_{r}}(x):=\operatorname{span}\left\\{f_{1}(x), \ldots, f_{r}(x)\right\\} $$ for each \(x \in \mathcal{O}\). A distribution has constant rank \(r\) if \(\operatorname{dim} \Delta(x)=r\) for all \(x \in \mathcal{O}\).

Problem 9

Suppose that \(\Delta=\Delta_{f_{1}, \ldots, f_{r}}\) is a distribution of constant rank \(r\). Then, 1\. The following two properties are equivalent, for any $f \in \mathbb{V}(\mathcal{O})$ : (a) \(f \in_{p} \Delta\) (b) For each \(x^{0} \in \mathcal{O}\), there are a neighborhood \(\mathcal{O}_{0}\) of \(x^{0}\) and \(r\) smooth functions $\alpha_{i}: \mathcal{O}_{0} \rightarrow \mathbb{R}_{1} i=1, \ldots, r$, so that $$ f(x)=\sum_{i=1}^{r} \alpha_{i}(x) f_{i}(x) \text { for all } x \in \mathcal{O}_{0} $$ 2\. The following two properties are equivalent, for any $f \in \mathbb{V}(\mathcal{O})$ : (a) \(\Delta\) is invariant under \(f\). (b) \(\left[f, f_{j}\right] \in_{p} \Delta\) for each \(j \in\\{1, \ldots, r\\}\). 3\. Finally, the following two properties are equivalent: (a) \(\Delta\) is involutive. (b) \(\left[f_{i}, f_{j}\right] \in_{p} \Delta\) for all $i, j \in\\{1, \ldots, r\\}$.

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks

Join over 22 million students in learning with our Vaia App

The first learning app that truly has everything you need to ace your exams in one place.

  • Flashcards & Quizzes
  • AI Study Assistant
  • Smart Note-Taking
  • Mock-Exams
  • Study Planner
Join over 22 million students in learning with our Vaia App Join over 22 million students in learning with our Vaia App