Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q20SE

Expert-verified
Linear Algebra and its Applications
Found in: Page 267
Linear Algebra and its Applications

Linear Algebra and its Applications

Book edition 5th
Author(s) David C. Lay, Steven R. Lay and Judi J. McDonald
Pages 483 pages
ISBN 978-03219822384

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Exercises 19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right)\).

20. Let \(p\left( t \right){\bf{ = }}\left( {t{\bf{ - 2}}} \right)\left( {t{\bf{ - 3}}} \right)\left( {t{\bf{ - 4}}} \right){\bf{ = - 24 + 26}}t{\bf{ - 9}}{t^{\bf{2}}}{\bf{ + }}{t^{\bf{3}}}\). Write the companion matrix for \(p\left( t \right)\), and use techniques from chapter \({\bf{3}}\) to find the characteristic polynomial.

The characteristic polynomial of the matrix \({C_p}\) is \( - p\left( \lambda \right)\).

See the step by step solution

Step by Step Solution

Step 1: Find the companion matrix

Consider the polynomial \(p\left( t \right) = {a_0} + {a_1}t + ... + {a_{n - 1}}{t^{n - 1}} + {t^n}\).

The companion matrix of \(p\) is \({C_p} = \left( {\begin{aligned}{*{20}{c}}0&1&0&{...}&0\\0&0&1&{}&0\\:&{}&{}&{}&:\\0&0&0&{}&1\\{ - {a_0}}&{ - {a_1}}&{ - {a_2}}&{...}&{ - {a_{n - 1}}}\end{aligned}} \right)\).

Find the companion matrix for the given polynomial.

\(p\left( t \right) = - 24 + 26t - 9{t^2} + {t^3}\)

Therefore, on comparison we get,

\({C_p} = \left( {\begin{aligned}{*{20}{c}}0&1&0\\0&0&1\\{24}&{ - 26}&9\end{aligned}} \right)\)

Step 2: Find the characteristic polynomial

\(\begin{aligned}{c}\det \left( {{C_p} - \lambda I} \right) &= \det \left( {\begin{aligned}{*{20}{c}}{ - \lambda }&1&0\\0&{ - \lambda }&1\\{24}&{ - 26}&{9 - \lambda }\end{aligned}} \right)\\ &= \left( { - \lambda } \right)\left( {\left( { - \lambda } \right)\left( {9 - \lambda } \right) + 26} \right) + 24\\ &= \left( { - \lambda } \right)\left( { - 9\lambda + {\lambda ^2} + 26} \right) + 24\\ &= 9{\lambda ^2} - {\lambda ^3} - 26\lambda + 24\\ &= - \left( { - 24 + 26\lambda - 9{\lambda ^2} + {\lambda ^3}} \right)\\ &= - p\left( \lambda \right)\end{aligned}\)

Therefore, the characteristic polynomial of the matrix \({C_p}\) is \( - p\left( \lambda \right)\).

Most popular questions for Math Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.