Open in App
Log In Start studying!

Select your language

Suggested languages for you:

Problem 225

Find the characteristic and minimum polynomials of each of the following matrices (a) \(\mid \begin{array}{cc}3 & -1 \mid \\ \mid-1 & 3 \mid\end{array}\) (b) \(\begin{array}{cc}\mid 1 & 1 \mid \\ & \mid 0 & 2 \mid\end{array}\) (c) \(\begin{aligned} \mid 1 &-2 \mid \\ & \mid 0 &-1 \mid \end{aligned}\) (d) \(\begin{array}{rl}\mid 1 & 1 \mid \\ & \mid 0 & 1 \mid\end{array}\) (e) $\begin{array}{rrrr} & \mid 0 & 1 & 0 & 0 \\ & \mid 0 & 0 & 0 & 0 \\ & \mid 0 & 0 & 1 & -2 \mid \\ & \mid 0 & 0 & 1 & -1\end{array}$ (f) $\begin{array}{cccc} & \mid 3 & 1 & 0 & 0 \\ & \mid 0 & 3 & 0 & 0 \\ & \mid 0 & 0 & 2 & 1 \\ & \mid 0 & 0 & 1 & 2\end{array} \mid$

Short Answer

Expert verified
The characteristic and minimum polynomials of the given matrices are: (a) Matrix: \(\begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}\) Characteristic polynomial: \(p(\lambda) = \lambda^2 - 6\lambda + 8\) Minimum polynomial: \(m(\lambda) = (\lambda - 2)(\lambda - 4)\) (b) Matrix: \(\begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}\) Characteristic polynomial: \(p(\lambda)=\lambda^2 - 3\lambda + 2\) Minimum polynomial: \(m(\lambda)=(\lambda - 1)(\lambda - 2)\) (c) Matrix: \(\begin{bmatrix} 1 & -2 \\ 0 & -1 \end{bmatrix}\) Characteristic polynomial: \(p(\lambda)=\lambda^2 +\lambda\) Minimum polynomial: \(m(\lambda)=\lambda(\lambda + 1)\) (d) Matrix: \(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}\) Characteristic polynomial: \(p(\lambda)=(\lambda - 1)^2\) Minimum polynomial: \(m(\lambda)=(\lambda - 1)^2\) (e) Matrix: \(\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 1 & -1 \end{bmatrix}\) Characteristic polynomial: \(p(\lambda)=\lambda^3(\lambda - 1)\) Minimum polynomial: \(m(\lambda)=\lambda^2(\lambda - 1)\) (f) Matrix: \(\begin{bmatrix} 3 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}\) Characteristic polynomial: \(p(\lambda)=(\lambda - 3)^2(\lambda - 2)^2\) Minimum polynomial: \(m(\lambda)=(\lambda - 3)(\lambda - 2)\)
See the step by step solution

Step by step solution

Unlock all solutions

Get unlimited access to millions of textbook solutions with Vaia Premium

Over 22 million students worldwide already upgrade their learning with Vaia!

Step 1: Finding the Characteristic Polynomial

Set the determinant of (A - λI) to 0: \(\begin{vmatrix} 3-\lambda & -1 \\ -1 & 3-\lambda \end{vmatrix} = 0\) Calculate the determinant: \((3-\lambda)(3-\lambda) - (-1)(-1) = \lambda^2 - 6\lambda + 9 - 1 = \lambda^2 - 6\lambda + 8\) The characteristic polynomial is \(p(\lambda)=\lambda^2 - 6\lambda + 8\).

Step 2: Finding the Eigenvalues

Solve the characteristic polynomial equation \(p(\lambda)=0\): \(\lambda^2 - 6\lambda + 8 = 0\) Factoring yields: \((\lambda - 4)(\lambda - 2) = 0\) Eigenvalues are λ=2 and λ=4.

Step 3: Constructing the Minimum Polynomial

Since we have two distinct eigenvalues, the minimum polynomial is formed by multiplying the factors of the characteristic polynomial corresponding to each eigenvalue: \(m(\lambda) = (\lambda - 2)(\lambda - 4)\) Thus, the characteristic polynomial for matrix (a) is \(p(\lambda) = \lambda^2 - 6\lambda + 8\) and the minimum polynomial is \(m(\lambda) = (\lambda - 2)(\lambda - 4)\). These explanations are then repeated for each matrix: (b) Matrix: \(\begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}\) Characteristic polynomial: \(p(\lambda)=\lambda^2 - 3\lambda + 2\) Minimum polynomial: \(m(\lambda)=(\lambda - 1)(\lambda - 2)\) (c) Matrix: \(\begin{bmatrix} 1 & -2 \\ 0 & -1 \end{bmatrix}\) Characteristic polynomial: \(p(\lambda)=\lambda^2 +\lambda\) Minimum polynomial: \(m(\lambda)=\lambda(\lambda + 1)\) (d) Matrix: \(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}\) Characteristic polynomial: \(p(\lambda)=(\lambda - 1)^2\) Minimum polynomial: \(m(\lambda)=(\lambda - 1)^2\) (e) Matrix: \(\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 1 & -1 \end{bmatrix}\) Characteristic polynomial: \(p(\lambda)=\lambda^3(\lambda - 1)\) Minimum polynomial: \(m(\lambda)=\lambda^2(\lambda - 1)\) (f) Matrix: \(\begin{bmatrix} 3 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}\) Characteristic polynomial: \(p(\lambda)=(\lambda - 3)^2(\lambda - 2)^2\) Minimum polynomial: \(m(\lambda)=(\lambda - 3)(\lambda - 2)\)

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Join over 22 million students in learning with our Vaia App

The first learning app that truly has everything you need to ace your exams in one place.

  • Flashcards & Quizzes
  • AI Study Assistant
  • Smart Note-Taking
  • Mock-Exams
  • Study Planner
Join over 22 million students in learning with our Vaia App Join over 22 million students in learning with our Vaia App

Recommended explanations on Math Textbooks