Americas
Europe
Problem 225
Find the characteristic and minimum polynomials of each of the following matrices (a) \(\mid \begin{array}{cc}3 & -1 \mid \\ \mid-1 & 3 \mid\end{array}\) (b) \(\begin{array}{cc}\mid 1 & 1 \mid \\ & \mid 0 & 2 \mid\end{array}\) (c) \(\begin{aligned} \mid 1 &-2 \mid \\ & \mid 0 &-1 \mid \end{aligned}\) (d) \(\begin{array}{rl}\mid 1 & 1 \mid \\ & \mid 0 & 1 \mid\end{array}\) (e) $\begin{array}{rrrr} & \mid 0 & 1 & 0 & 0 \\ & \mid 0 & 0 & 0 & 0 \\ & \mid 0 & 0 & 1 & -2 \mid \\ & \mid 0 & 0 & 1 & -1\end{array}$ (f) $\begin{array}{cccc} & \mid 3 & 1 & 0 & 0 \\ & \mid 0 & 3 & 0 & 0 \\ & \mid 0 & 0 & 2 & 1 \\ & \mid 0 & 0 & 1 & 2\end{array} \mid$
What do you think about this solution?
We value your feedback to improve our textbook solutions.
[A] Find the minimum polynomial \(\mathrm{m}(\lambda)\) of the matrix $\mathrm{A}=\begin{array}{cccc}2 & 1 & 0 & 0 \\ & 0 & 2 & 0 & 0 \mid \\ & 0 & 0 & 2 & 0 \\ & 0 & 0 & 0 & 5\end{array}$ [B] Let \(\mathrm{A}\) be a 3 by 3 matrix over the real field cannot be a zero of the polynomial, \(\varphi(\lambda)=\lambda^{2}+1\)
Find the minimal polynomial of $\mathrm{A}=\mid \begin{array}{rrr}9 & -2 & 2 \\\ -8 & 3 & -2 \mid \\ \mid-48 & 12 & -11 \mid\end{array}$
(A) Define the characteristic polynomial of the matrix \(\mathrm{A}\), (B) Let $\mathrm{A}=\begin{array}{ccc}\mid 1 & 2 & -1 \mid \\ \mid 1 & 0 & 1 \mid \\ \mid 4 & -4 & 5\end{array}$ Find the characteristic polynomial of \(\mathrm{A}\).
If $\mathrm{F}(\mathrm{X})=\begin{array}{ccccc}1 & 0 & 1 \mid & \mid 2 & 1 & 0 \mid \\ & \mid 2 & 1 & 1 \mid & -\mid-1 & 1 & 1 \\ & 1 & 1 & 1 \mid & \mid 0 & 1 & 0\end{array} \mid$ $\begin{array}{rllll} & \mid 1 & 1 & 1 \mid & & \\ \mathrm{X}+ & \mid 1 & 0 & 1 \mid \mathrm{X}^{2}, & \text { and } \mathrm{B}= & 1 & 1 \\ & \mid 0 & 1 & 0 \mid & 1 & 0 \\ & \text { find } \mathrm{F}_{\mathrm{L}}(\mathrm{B}) & \text { and } \mathrm{F}_{\mathrm{R}}(\mathrm{B}) .\end{array}$
Let \(\quad \varphi(\lambda)=-2-5 \lambda+3 \lambda^{2}\) $$ \begin{array}{rrrr}A= & \mid 1 & 2 \mid . & \text { Show that } & \varphi(A)=\mid 14 & 2 \mid \\ & \mid 3 & 1 \mid & & 13 & 14\end{array} $$
The first learning app that truly has everything you need to ace your exams in one place.