Americas
Europe
Problem 191
Let \(U\) and \(W\) be the following subspaces of \(R^{4}\). $$ \begin{aligned} &\mathrm{U}=\\{(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}): \mathrm{b}+\mathrm{c}+\mathrm{d}=0\\} \\ &\mathrm{W}=\\{(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}): \mathrm{a}+\mathrm{b}=0, \mathrm{c}=2 \mathrm{~d}\\} \end{aligned} $$ Find the dimension and a basis of: (i) \(\mathrm{U}_{2}\) (ii) \(\mathrm{W}\), (iii) \(\mathrm{U} \cap \mathrm{W}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.
Show that the following system has more than one solution. $$ 3 x-y+7 z=0 $$ $$ \begin{aligned} &2 \mathrm{x}-\mathrm{y}+4 \mathrm{z}=(1 / 2) \\ &\mathrm{x}-\mathrm{y}+\mathrm{z}=1 \\ &6 \mathrm{x}-4 \mathrm{y}+10 \mathrm{z}=3 \end{aligned} $$
Find the dimension of the vector space spanned by: (i) \((1,-2,3,-1)\) and \((1,1,-2,3)\) (ii) \((3,-6,3,-9)\) and \((-2,4,-2,6)\) (iii) \(t^{3}+2 t^{2}+3 t+1\) and \(2 t^{3}+4 t^{2}+6 t+2\) (iv) \(t^{3}-2 t^{2}+5\) and \(t^{2}+3 t-4\) (v) \(\begin{array}{ll}11 & 2 \mid & \text { and } 11\end{array}\) \(\begin{array}{ll}11 & 21\end{array}\) (vi) $\begin{array}{rrrr} & 11 & 11 & \mid-3 & -3 \mid \\ & \mid-1 & -1 \mid & 3 & 3 \mid\end{array}$ (vii) 3 and \(-3\).
Solve the following system $\mathrm{x}_{1}-2 \mathrm{x}_{2}-3 \mathrm{x}_{3}=3$ \(2 \mathrm{x}_{1}-\mathrm{x}_{2}-4 \mathrm{x}_{3}=7\) \(3 \mathrm{x}_{1}-3 \mathrm{x}_{2}-5 \mathrm{x}_{3}=8\)
Define elementary row operations and give an example,
For the system \(2 \mathrm{x}-\mathrm{y}+\mathrm{z}=0\) \(-7 x+7 / 2 y-7 / 2 z=0\) \(4 x+y-2 z=0\) form the matrix of coefficients. Find the form of the solutions to the system by reducing the coefficient matrix to a reduced matrix.
The first learning app that truly has everything you need to ace your exams in one place.