Open in App
Log In Start studying!

Select your language

Suggested languages for you:

Problem 207

Show that the following system has more than one solution. $$ 3 x-y+7 z=0 $$ $$ \begin{aligned} &2 \mathrm{x}-\mathrm{y}+4 \mathrm{z}=(1 / 2) \\ &\mathrm{x}-\mathrm{y}+\mathrm{z}=1 \\ &6 \mathrm{x}-4 \mathrm{y}+10 \mathrm{z}=3 \end{aligned} $$

Problem 209

Find the solutions of the following systems and describe the solutions in geometric terms. (a) \(-2 \mathrm{x}+\mathrm{y}+3 \mathrm{z}=0\) \(2 x-y-3 z=0\) \(-6 x+3 y+9 z=0\) (b) \(2 x+5 y+z=0\) \(\mathrm{x}-2 \mathrm{y}+\mathrm{z} \quad=0\) \(3 x+3 y+2 z=0\) (c) \(x-y+z \quad=0\) \(2 x-y+z \quad=0\) \(\mathrm{x}+\mathrm{y}+\mathrm{z} \quad=0\)

Problem 210

Find the necessary and sufficient conditions for the existence of a solution to the following system. $$ \begin{aligned} x+y+2 z &=a_{1} \\ -2 x-z &=a_{2} \\ x+3 y+5 z &=a_{3} \end{aligned} $$

Problem 211

Determine the values of a so that the following system of (a) no solution, (b) more than one solution, (c) a unique solution. $$ \begin{array}{r} x+y-z=1 \\ 2 x+3 y+a z=3 \\ x+a y+3 z=2 \end{array} $$

Problem 212

Solve the following system $\mathrm{x}_{1}-2 \mathrm{x}_{2}-3 \mathrm{x}_{3}=3$ \(2 \mathrm{x}_{1}-\mathrm{x}_{2}-4 \mathrm{x}_{3}=7\) \(3 \mathrm{x}_{1}-3 \mathrm{x}_{2}-5 \mathrm{x}_{3}=8\)

Problem 213

Find the solution set of the following system of equations: \(2 \mathrm{x}_{1}+\mathrm{x}_{2}-4 \mathrm{x}_{3}=8\) \(3 \mathrm{x}_{1}-\mathrm{x}_{2}+2 \mathrm{x}_{3}=-1\)

Problem 214

Consider the following nonhomogeneous system of linear equations. $2 \mathrm{x}+\mathrm{y}-3 \mathrm{z}=1$ \(3 x+2 y-2 z=2\) \(\mathrm{x}+\mathrm{y}+\mathrm{z} \quad=1\) Show that (i) any two solutions to the system (1) differ by a vector which is a solution to the homogeneous system \(2 \mathrm{x}+\mathrm{y}-3 \mathrm{z}=0\) \(3 x+2 y-2 z=0\) \(\mathrm{x}+\mathrm{y}+\mathrm{z} \quad=0\) (ii) the sum of a solution to (1) and a solution to (2) gives a solution to (1).

Problem 215

Solve the following systems of equations. $\begin{array}{ll}\text { (1) } & 4 \mathrm{x}_{1}-3 \mathrm{x}_{2}+\mathrm{x}_{3}=-1 \\ & \mathrm{x}_{1}+5 \mathrm{x}_{2}-2 \mathrm{x}_{3}=2 \\ & \mathrm{x}_{1}+2 \mathrm{x}_{2}=0 \\\ \text { (2) } & 2 \mathrm{x}_{1}+3 \mathrm{x}_{2}+\mathrm{x}_{3}-4 \mathrm{x}_{4}=0 \\ & \mathrm{x}_{1}-5 \mathrm{x}_{2}-3 \mathrm{x}_{3}+2 \mathrm{x}_{4}=0 \\ & 5 \mathrm{x}_{1}+2 \mathrm{x}_{2}-\mathrm{x}_{4}=0 & \\\ & 2 \mathrm{x}_{1}-9 \mathrm{x}_{2}-5 \mathrm{x}_{3}+9 \mathrm{x}_{4}=0 \\\ \text { (3) } & 8 \mathrm{x}_{1}-2 \mathrm{x}_{2}+4 \mathrm{x}_{3}+3 \mathrm{x}_{4}+\mathrm{x}_{5} & =2 \\ & \mathrm{x}_{2}-4 \mathrm{x}_{3}+\mathrm{x}_{4} & -2 \mathrm{x}_{5} & =-100 \\ & 2 \mathrm{x}_{1}+\mathrm{x}_{2}-\quad 4 \mathrm{x}_{4} & =1\end{array}$

Problem 216

Show that the system of linear equations over the rational number field \(Q\) $2 \mathrm{x}_{1}+6 \mathrm{x}_{2}-\mathrm{x}_{3}+\mathrm{x}_{4}=2$ \(\mathrm{x}_{1}+3 \mathrm{x}_{2}+\mathrm{x}_{3} \quad=5\) \(-x_{1}-3 x_{2}-x_{3}\) \(=0\) has no solution.

Problem 218

If the method of Gauss elimination corresponds in its final form to an echelon matrix, what is the matrix analogue of the Gauss-Jordan method for solving linear systems of equations? Explain by example.

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks

Join over 22 million students in learning with our Vaia App

The first learning app that truly has everything you need to ace your exams in one place.

  • Flashcards & Quizzes
  • AI Study Assistant
  • Smart Note-Taking
  • Mock-Exams
  • Study Planner
Join over 22 million students in learning with our Vaia App Join over 22 million students in learning with our Vaia App