Americas
Europe
Problem 173
Find the rank of matrix A where $$ \mathrm{A}=\begin{array}{cccc} 1 & 0 & 2 & 3 \mid \\ 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 0 \end{array} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.
Give an example to illustrate the following theorem: The system of n homogeneous linear equations in \(\mathrm{n}\) unknowns, \(\mathrm{AX}=0\), has a nontrivial solution if and only if rank \(\mathrm{A}<\mathrm{n}\)
Let \(\mathrm{A}\) be the matrix $$ \begin{array}{rrrrrr} \mid 0 & 1 & 3 & -2 & -1 & 2 \\ 10 & 2 & 6 & -4 & -2 & 4 \\ \mid 0 & 1 & 3 & -2 & 1 & 4 \\ \mid 0 & 2 & 6 & 1 & -1 & 0 \end{array} $$ Find the determinant rank of \(\mathrm{A}\)
Let the homogeneous linear system \(\mathrm{AX}=\mathrm{B}\) be given by \(\begin{array}{llll}1 & 2 & 0 \mid & \left|x_{1}\right| & |0|\end{array}\) \(|0 \quad 1 \quad 3| \quad\left|\mathrm{x}_{2}\right|=|0|\) $\mid \begin{array}{llll}2 & 1 & 3 \mid & \left|\mathrm{x}_{3}\right| & |0| \text { . }\end{array}$ Show that \(\mathrm{A}\) has only the trivial solution, $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=(0,0,0)$
Let \(\mathrm{P}_{4}\), denote the vector space of all polynomials of degree at most equal to four. Let \(\mathrm{V}\) be the subspace of \(\mathrm{P}_{4}\). spanned by $\mathrm{S}=\left\\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\\}\( where \)\alpha_{1}=\mathrm{t}^{4}+\mathrm{t}^{2}+2 \mathrm{t}+1$ \(\alpha_{2}=t^{4}+t^{2}+2 t+2, \alpha_{3}=2 t^{4}+t^{3}+t+2\) and \(\alpha_{4}=t^{4}+t^{3}-t^{2}\) \(-\mathrm{t}\). Find a basis for \(\mathrm{V}\).
Let \(\mathrm{V}\) be the subspace of \(\mathrm{R}^{4}\) spanned by $\mathrm{S}=\left\\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right\\}\( where \)\alpha_{1}=[1,2,1,2], \alpha_{2}=[2,1,2,1]$ \(\alpha_{3}=[3,2,3,2], \alpha_{4}=[3,3,3,3], \alpha_{5}=[5,3,5,3]\). Find a basis for \(\mathrm{V}\).
The first learning app that truly has everything you need to ace your exams in one place.