Americas
Europe
Problem 157
Let $\mathrm{A}=\begin{array}{ccc}\mid 1 & 1 & 1 \mid \\ \mid 0 & 1 & 0 \\\ \mid 0 & 1 & 1\end{array}$ Find the inverse of \(\mathrm{A}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.
Use the classical adjoint to find \(\mathrm{A}^{-1}\) where $$ \mathrm{A}=\mid \begin{array}{rrr} 1 & 0 & -1 \mid \\ 0 & 2 & 2 \\ \mid 1 & 1 & -1 \mid \end{array} $$
Find the inverse of $$ \begin{array}{ll} \mid 1 & 2 \\ \mid 3 & 7 \end{array} \mid $$
Find the inverses of the following matrices. (1) $\quad \mathrm{A}=\mid \begin{array}{ll}3 & 1 \mid \\ \mid-1 & 6 \mid\end{array}$ (2) $\quad \mathrm{A}=\begin{array}{rrr} & 11 & -7 & -14 \\ & \mid 2 & 1 & -1 \\\ & \mid 1 & 3 & 4\end{array}$ (3) $\quad \begin{array}{rrr} & \mid 3 & 1 & 0 \\ & A=\mid 1 & -1 & 2 \mid \\\ & \mid 1 & 1 & 1 \mid\end{array}$
Let $\mathrm{A}=\begin{array}{ccc}1 & 2 & 3 \mid \\ \mid 1 & 3 & 2 \\ \mid 1 & 1 & 5\end{array}$ Show how we obtain the inverse of \(A\) by reducing the matrix [A: I] to a matrix of the form \([\mathrm{I}: \mathrm{B}]\).
Find the inverse of the matrix A where $$ \mathrm{A}=\begin{array}{cccc} 11 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ & 0 & 0 & 1 & 1 \\ & \mid 0 & 0 & 0 & 1 \end{array} $$ Show that the inverse of a diagonal matrix is obtained by inverting the diagonal entries.
The first learning app that truly has everything you need to ace your exams in one place.