Americas
Europe
Problem 156
Find the inverse of $$ \begin{array}{ll} \mid 1 & 2 \\ \mid 3 & 7 \end{array} \mid $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.
Let $\mathrm{A}=\begin{array}{ccc}1 & 2 & 3 \mid \\ \mid 1 & 3 & 2 \\ \mid 1 & 1 & 5\end{array}$ Show how we obtain the inverse of \(A\) by reducing the matrix [A: I] to a matrix of the form \([\mathrm{I}: \mathrm{B}]\).
Find the inverse of $$ \mathrm{A}=\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{array} $$
Let $\mathrm{A}=\begin{array}{ccc}\mid 1 & 1 & 1 \mid \\ \mid 0 & 1 & 0 \\\ \mid 0 & 1 & 1\end{array}$ Find the inverse of \(\mathrm{A}\).
Find the inverse of A where $$ \mathrm{A}=\left|\begin{array}{rrr} 1 & 2 & -3 \\ 1 & -2 & 1 \\ \mid 5 & -2 & -3 \end{array}\right| $$
Show that \(\mathrm{A}\) is not invertible where $$ \mathrm{A}=\begin{array}{llr} 1 & 6 & 4 \\ 2 & 4 & -1 \\ -1 & 2 & 5 \end{array} \mid $$
The first learning app that truly has everything you need to ace your exams in one place.