Americas
Europe
Problem 120
a) Show that: (i) \(\mathrm{A} 0=0\) (ii) \(0 \mathrm{~A}=0\) (iii) \(\mathrm{AI}=\mathrm{A}\) (iv) \(\mathrm{IA}=\mathrm{A}\) where 0 and I denote the zero and identity matrices respectively, and \(\begin{array}{lll}\mathrm{A} & =12 & 1 & 3 \mid\end{array}\) \(\begin{array}{lll}14 & -1 & -1 \mid\end{array}\) b) Give examples of the following rules: (i) if A has a row of zeros, the same row of \(\mathrm{AB}\) consists of zeros, (ii) if \(\mathrm{B}\) has a column of zeros, the same column of AB consists of zeros.
What do you think about this solution?
We value your feedback to improve our textbook solutions.
Define (1) An upper triangular matrix. (2) A lower triangular matrix. (3) A properly triangular matrix. Give examples.
Prove that if \(\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)\) and \(\mathrm{B}=\left(\mathrm{b}_{\mathrm{ij}}\right)\) are $\mathrm{m} \times \mathrm{n}$ matrices over a field \(\mathrm{K}\) and \(\mathrm{c}\) is an element of \(\mathrm{K}\), then \(\mathrm{A}+\mathrm{B}=\left(\mathrm{c}_{\mathrm{jj}}\right)\) where $c_{i j}=a_{i j}+b_{i j}, i=1,2, \ldots, m, j=1,2, \ldots, n\( and \)c A=\left(d_{i j}\right)$ where \(d_{i j}=c a_{i j}, i=1,2, \ldots, m, j=1,2, \ldots, n\)
Find (i) \(A^{2}\) (ii) \(A^{3}\) (iii) \(A^{4}\) when $A=\begin{array}{rl}1 & 2 \mid \\ & \mid-1\end{array}$
Let $\mathrm{A}=\begin{array}{cll}11 & 2 & 0 \mid \\ 13 & -1 & 4 \mid\end{array}\( Find (i) \)\mathrm{AA}^{\mathrm{t}}$, (ii) \(\mathrm{A}^{\mathrm{t}} \mathrm{A}\)
Show that in matrix arithmetic we can have the following: (a) \(\quad \mathrm{AB} \neq \mathrm{BA}\). (b) \(\quad \mathrm{A} \neq 0, \mathrm{~B} \neq 0\) and yet, \(\mathrm{AB}=0\). (c) \(\quad A \neq 0\) and \(A^{2}=0\). (d) \(\quad \mathrm{A} \neq 0, \mathrm{~A}^{2} \neq 0\) and \(\mathrm{A}^{3}=0\). (e) \(\mathrm{A}^{2}=\mathrm{A}\) with \(\mathrm{A} \neq 0\) and $\mathrm{A} \neq \mathrm{I}$. (f) \(\quad A^{2}=\) I with \(A \neq I\) and \(A \neq-I\).
The first learning app that truly has everything you need to ace your exams in one place.