Suggested languages for you:

Americas

Europe

Problem 111

Let \((\mathrm{r} \times \mathrm{s})\) denote a matrix with shape $(\mathrm{r} \times \mathrm{s})$. Find the shape of the following products if the product is defined (i) \((2 \times 3)(3 \times 4)\) (iii) \((1 \times 2)(3 \times 1)\) (v) \((3 \times 4)(3 \times 4)\) (ii) \((4 \times 1)(1 \times 2)\) (iv) \((5 \times 2)(2 \times 3)\) (vi) \((2 \times 2)(2 \times 4)\)

Expert verified

(i) \((2 \times 4)\)
(iii) Not defined
(v) Not defined
(ii) \((4 \times 2)\)
(iv) \((5 \times 3)\)
(vi) \((2 \times 4)\)

What do you think about this solution?

We value your feedback to improve our textbook solutions.

- Access over 3 million high quality textbook solutions
- Access our popular flashcard, quiz, mock-exam and notes features
- Access our smart AI features to upgrade your learning

Chapter 4

Find (i) \(A^{2}\) (ii) \(A^{3}\) (iii) \(A^{4}\) when $A=\begin{array}{rl}1 & 2 \mid \\ & \mid-1\end{array}$

Chapter 4

Show that in matrix arithmetic we can have the following: (a) \(\quad \mathrm{AB} \neq \mathrm{BA}\). (b) \(\quad \mathrm{A} \neq 0, \mathrm{~B} \neq 0\) and yet, \(\mathrm{AB}=0\). (c) \(\quad A \neq 0\) and \(A^{2}=0\). (d) \(\quad \mathrm{A} \neq 0, \mathrm{~A}^{2} \neq 0\) and \(\mathrm{A}^{3}=0\). (e) \(\mathrm{A}^{2}=\mathrm{A}\) with \(\mathrm{A} \neq 0\) and $\mathrm{A} \neq \mathrm{I}$. (f) \(\quad A^{2}=\) I with \(A \neq I\) and \(A \neq-I\).

Chapter 4

a) If \(\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)\) is a $\mathrm{p} \times \mathrm{q}\( matrix and \)\mathrm{B}=\left(\mathrm{b}_{i j}\right)$ is a \(\mathrm{q} \times \mathrm{r}\) matrix prove \(A B\) is the \(p \times r\) matrix \(\left(c_{i j}\right)\) where $c_{i j}={ }^{q} \sum_{k=1} a_{i k} b_{k j}, \quad i=1,2, \ldots, p$ \(\mathrm{J}=1,2, \ldots, \mathrm{r}\) b) If $\mathrm{A}=\begin{array}{ccccc} & 2 & 1 & 1 \mid & \mid 2 & 1 \mid \\\ & \mid-1 & 2 & 3 \mid & \text { and } B=1-1 & 1 \mid, \text { find } A B \text { . } \\ & \mid 1 & 0 & 1 \mid & \mid 2 & -1 \mid\end{array}$

Chapter 4

If $\mathrm{A}=\begin{array}{cccccc}2 & -2 & 4 \mid & \text { and } & \mathrm{B}=10 & 1 & -3\end{array} \mid$ \(\mid-1 \quad 1\) \(1 \mid\) 113 find \(2 \mathrm{~A}+\mathrm{B}\).

Chapter 4

Prove \((\mathrm{AB}) \mathrm{C}=\mathrm{A}(\mathrm{BC})\) where $\mathrm{A}=\mid 5 \quad \begin{array}{ccc}12 & 2 & 3 \mid \\ -3 & 4 \mid,\end{array}$ $\begin{array}{rlrr}\mathrm{B}= & 12 & -1 & 1 & 0 \\ 10 & 2 & 2 & 21 \\ 13 & 0 & -1 & 31\end{array}$ and $\quad C=\begin{array}{ccc}11 & 0 & 2 \mid \\ 12 & -3 & 0 \mid \\ 12 & 1 & 0 \mid\end{array}$

The first learning app that truly has everything you need to ace your exams in one place.

- Flashcards & Quizzes
- AI Study Assistant
- Smart Note-Taking
- Mock-Exams
- Study Planner