Americas
Europe
Problem 111
Let \((\mathrm{r} \times \mathrm{s})\) denote a matrix with shape $(\mathrm{r} \times \mathrm{s})$. Find the shape of the following products if the product is defined (i) \((2 \times 3)(3 \times 4)\) (iii) \((1 \times 2)(3 \times 1)\) (v) \((3 \times 4)(3 \times 4)\) (ii) \((4 \times 1)(1 \times 2)\) (iv) \((5 \times 2)(2 \times 3)\) (vi) \((2 \times 2)(2 \times 4)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.
Find (i) \(A^{2}\) (ii) \(A^{3}\) (iii) \(A^{4}\) when $A=\begin{array}{rl}1 & 2 \mid \\ & \mid-1\end{array}$
Show that in matrix arithmetic we can have the following: (a) \(\quad \mathrm{AB} \neq \mathrm{BA}\). (b) \(\quad \mathrm{A} \neq 0, \mathrm{~B} \neq 0\) and yet, \(\mathrm{AB}=0\). (c) \(\quad A \neq 0\) and \(A^{2}=0\). (d) \(\quad \mathrm{A} \neq 0, \mathrm{~A}^{2} \neq 0\) and \(\mathrm{A}^{3}=0\). (e) \(\mathrm{A}^{2}=\mathrm{A}\) with \(\mathrm{A} \neq 0\) and $\mathrm{A} \neq \mathrm{I}$. (f) \(\quad A^{2}=\) I with \(A \neq I\) and \(A \neq-I\).
a) If \(\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)\) is a $\mathrm{p} \times \mathrm{q}\( matrix and \)\mathrm{B}=\left(\mathrm{b}_{i j}\right)$ is a \(\mathrm{q} \times \mathrm{r}\) matrix prove \(A B\) is the \(p \times r\) matrix \(\left(c_{i j}\right)\) where $c_{i j}={ }^{q} \sum_{k=1} a_{i k} b_{k j}, \quad i=1,2, \ldots, p$ \(\mathrm{J}=1,2, \ldots, \mathrm{r}\) b) If $\mathrm{A}=\begin{array}{ccccc} & 2 & 1 & 1 \mid & \mid 2 & 1 \mid \\\ & \mid-1 & 2 & 3 \mid & \text { and } B=1-1 & 1 \mid, \text { find } A B \text { . } \\ & \mid 1 & 0 & 1 \mid & \mid 2 & -1 \mid\end{array}$
If $\mathrm{A}=\begin{array}{cccccc}2 & -2 & 4 \mid & \text { and } & \mathrm{B}=10 & 1 & -3\end{array} \mid$ \(\mid-1 \quad 1\) \(1 \mid\) 113 find \(2 \mathrm{~A}+\mathrm{B}\).
Prove \((\mathrm{AB}) \mathrm{C}=\mathrm{A}(\mathrm{BC})\) where $\mathrm{A}=\mid 5 \quad \begin{array}{ccc}12 & 2 & 3 \mid \\ -3 & 4 \mid,\end{array}$ $\begin{array}{rlrr}\mathrm{B}= & 12 & -1 & 1 & 0 \\ 10 & 2 & 2 & 21 \\ 13 & 0 & -1 & 31\end{array}$ and $\quad C=\begin{array}{ccc}11 & 0 & 2 \mid \\ 12 & -3 & 0 \mid \\ 12 & 1 & 0 \mid\end{array}$
The first learning app that truly has everything you need to ace your exams in one place.