Americas
Europe
Problem 52
A linear transformation, \(\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}\), is a function defined on a vector space \(\mathrm{V}\) over a field \(\mathrm{K}\) that satisfies i) \(\mathrm{T}\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right)=\mathrm{T}\left(\mathrm{v}_{1}\right)+\mathrm{T}\left(\mathrm{v}_{2}\right)\) ii) $\mathrm{T}\left(\alpha \mathrm{v}_{1}\right)=\alpha \mathrm{T}\left(\mathrm{v}_{1}\right)$ for \(\mathrm{v}_{1}, \mathrm{v}_{2} \varepsilon \mathrm{V}\) and $\alpha \varepsilon \mathrm{K}$. Give examples of some non-linear functions by showing that they fail to satisfy either (i) or (ii).
What do you think about this solution?
We value your feedback to improve our textbook solutions.
Find the inverses of the following transformations using the matrices associated with the transformations: 1) \(\mathrm{T}\) is a counterclockwise rotation in \(\mathrm{R}^{2}\) through the angle \(\theta\). 2) \(\mathrm{T}\) is reflection in the \(\mathrm{y}\) -axis in \(\mathrm{R}^{2}\)
1 ) Let \(\mathrm{V}\) be a vector space over a field \(\mathrm{F}\) and let \(\alpha \varepsilon \mathrm{F}\) be any nonzero scalar. Show that multiplication by \(\alpha\), $\mathrm{M}_{\alpha}: \mathrm{V} \rightarrow \mathrm{V}$ is a vector-space isomorphism. 2) Let \(\mathrm{V}\) and \(\mathrm{w}\) be any vector spaces over \(\mathrm{F}\) and \(\mathrm{V} \varepsilon \mathrm{W}\) their Cartesian product. Show that \(\mathrm{V} \cong \mathrm{V} \times\\{0\\}\) where \(0 \varepsilon \mathrm{W}\).
Let T: \(\mathrm{R}^{4} \rightarrow \mathrm{R}^{3}\) be a linear transformation defined by $\mathrm{T}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})=(\mathrm{x}-\mathrm{y}+\mathrm{z}+\mathrm{t}, \mathrm{x}+2 \mathrm{z}-\mathrm{t}, \mathrm{x}+\mathrm{y}+3 \mathrm{z}-3 \mathrm{t})$ Find a basis and the dimension of the i) image of \(\mathrm{T}\) ii) kernel of \(\mathrm{T}\).
Let the transformation \(L: R^{3} \rightarrow R^{3}\) be defined by $L([x, y, z])=[x, y]$ Show that \(\mathrm{L}\) is a linear transformation and describe its effect.
Find the inverse transformation of the following linear transformation : i) $\mathrm{T}(\mathrm{x}, \mathrm{y})=(2 \mathrm{x}+\mathrm{y},-\mathrm{x}+3 \mathrm{y})$ ii) \(T(x, y, z)=(x+y+z, x-y+z,-x+y+z)\)
The first learning app that truly has everything you need to ace your exams in one place.