Americas
Europe
Problem 320
Let $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}\right),\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right),\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots \ldots \mathrm{z}_{\mathrm{n}}\right)$ be three vectors in \(\mathrm{R}^{\mathrm{n}}\). Verify the following properties of the dot product using these vectors : a) \(\mathrm{X} \cdot \mathrm{X} \geq 0 ; \mathrm{X} \cdot \mathrm{X}=0\) if and only if \(\mathrm{X}=0\) b) \(X \cdot Y=Y \cdot X\) c) $(\mathrm{X}+\mathrm{Y}) \cdot \mathrm{Z}=\mathrm{X} \cdot \mathrm{Y}+\mathrm{X} \cdot \mathrm{Z}$ d) $(\mathrm{CX}) \cdot \mathrm{Y}=\mathrm{X} \cdot(\mathrm{cY})=\mathrm{c}(\mathrm{X} \cdot \mathrm{Y})$
What do you think about this solution?
We value your feedback to improve our textbook solutions.
Show geometrically that for each angle \(\theta\), the transformation \(\mathrm{T}_{\theta}: \mathrm{R}^{2} \rightarrow \mathrm{R}^{2}\), defined by $(\mathrm{x}, \mathrm{y}) \mathrm{T}_{\theta}=(\mathrm{x} \cos \theta-\mathrm{y} \sin \theta, \mathrm{x} \sin \theta+\mathrm{y} \cos \theta)$, is an orthogonal transformation.
Compute \(u \cdot v\) where i) \(u=(2,-3,6), \mathrm{v}=(8,2,-3)\); ii) \(\mathrm{u}=(1,-8,0,5), \mathrm{v}=(3,6,4) ;\) iii) \(\mathrm{u}=(3,-5,2,1)\), \(\mathrm{v}=(4,1,-2,5)\)
Find a vector orthogonal to \(\mathrm{A}=(2,1,-1)\) and \(\mathrm{B}=(1,2,1)\)
Find the distance between the vectors \(\mathrm{u}\) and \(\mathrm{v}\) where i) \(\mathrm{u}=(1,7), \mathrm{v}=(6,-5) ;\) ii) $\mathrm{u}=(3,-5,4), \mathrm{v}=(6,2,-1)$ iii) \(\mathrm{u}=(5,3,-2,-4,1) \cdot \mathrm{v}=(2,-1,0,-7,2)\)
Show that the vectors $\mathrm{f}_{1}=(1 / 2, \sqrt{3} / 2), \mathrm{f}_{2}=(\sqrt{3} / 2,-1 / 2)$ form an orthonormal basis for \(E^{2}\). Then find the coordinates of an arbitrary vector \(\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \in \mathrm{E}^{2}\).
The first learning app that truly has everything you need to ace your exams in one place.