Open in App
Log In Start studying!

Select your language

Suggested languages for you:

Problem 315

Find the distance between the vectors \(\mathrm{u}\) and \(\mathrm{v}\) where i) \(\mathrm{u}=(1,7), \mathrm{v}=(6,-5) ;\) ii) $\mathrm{u}=(3,-5,4), \mathrm{v}=(6,2,-1)$ iii) \(\mathrm{u}=(5,3,-2,-4,1) \cdot \mathrm{v}=(2,-1,0,-7,2)\)

Short Answer

Expert verified
i) \(d(\mathrm{u}, \mathrm{v}) = 13\) ii) \(d(\mathrm{u}, \mathrm{v}) = \sqrt{83}\) iii) \(d(\mathrm{u}, \mathrm{v}) = \sqrt{39}\)
See the step by step solution

Step by step solution

Unlock all solutions

Get unlimited access to millions of textbook solutions with Vaia Premium

Over 22 million students worldwide already upgrade their learning with Vaia!

Step 1: Subtract Vectors

Subtract the vectors component-wise: $$\mathrm{w} = \mathrm{u} - \mathrm{v} = (1 - 6, 7 - (-5)) = (-5, 12)$$

Step 2: Calculate the Magnitude of the Resulting Vector

Find the magnitude of the vector \(\mathrm{w}\) using the formula: $$\|\mathrm{w}\| = \sqrt{(-5)^2 + 12^2} = \sqrt{25 + 144} = \sqrt{169} = 13$$ So, the distance between the vectors \(\mathrm{u}\) and \(\mathrm{v}\) is: $$d(\mathrm{u}, \mathrm{v}) = 13$$ ii) For given vectors \(\mathrm{u} = (3, -5, 4)\) and \(\mathrm{v} = (6, 2, -1)\):

Step 1: Subtract Vectors

Subtract the vectors component-wise: $$\mathrm{w} = \mathrm{u} - \mathrm{v} = (3-6, -5-2, 4-(-1))=( -3,-7, 5)$$

Step 2: Calculate the Magnitude of the Resulting Vector

Find the magnitude of the vector \(\mathrm{w}\) using the formula: $$\|\mathrm{w}\| = \sqrt{(-3)^2 + (-7)^2 + 5^2} = \sqrt{9 + 49 + 25} = \sqrt{83}$$ So, the distance between the vectors \(\mathrm{u}\) and \(\mathrm{v}\) is: $$d(\mathrm{u}, \mathrm{v}) = \sqrt{83}$$ iii) For given vectors \(\mathrm{u} = (5, 3, -2, -4, 1)\) and \(\mathrm{v} = (2, -1, 0, -7, 2)\):

Step 1: Subtract Vectors

Subtract the vectors component-wise: $$\mathrm{w} = \mathrm{u} - \mathrm{v} = (5-2,3-(-1),-2-0,-4-(-7),1-2)=(3,4,-2,3,-1)$$

Step 2: Calculate the Magnitude of the Resulting Vector

Find the magnitude of the vector \(\mathrm{w}\) using the formula: $$\|\mathrm{w}\| = \sqrt{3^2 + 4^2 + (-2)^2 + 3^2 + (-1)^2} = \sqrt{9 + 16 + 4 + 9 + 1} = \sqrt{39}$$ So, the distance between the vectors \(\mathrm{u}\) and \(\mathrm{v}\) is: $$d(\mathrm{u}, \mathrm{v}) = \sqrt{39}$$

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Most popular questions from this chapter

Chapter 14

Let $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}\right),\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right),\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots \ldots \mathrm{z}_{\mathrm{n}}\right)$ be three vectors in \(\mathrm{R}^{\mathrm{n}}\). Verify the following properties of the dot product using these vectors : a) \(\mathrm{X} \cdot \mathrm{X} \geq 0 ; \mathrm{X} \cdot \mathrm{X}=0\) if and only if \(\mathrm{X}=0\) b) \(X \cdot Y=Y \cdot X\) c) $(\mathrm{X}+\mathrm{Y}) \cdot \mathrm{Z}=\mathrm{X} \cdot \mathrm{Y}+\mathrm{X} \cdot \mathrm{Z}$ d) $(\mathrm{CX}) \cdot \mathrm{Y}=\mathrm{X} \cdot(\mathrm{cY})=\mathrm{c}(\mathrm{X} \cdot \mathrm{Y})$

Chapter 14

Find the area of the triangle determined by the points $\mathrm{P}_{1}(2,2,0), \mathrm{P}_{2}(-1,0,1)\( and \)\mathrm{P}_{3}(0,4,3)$ by using the cross-product.

Chapter 14

Let \(\mathrm{u}=(2,-1,3)\) and \(\mathrm{v}=(4,-1,2)\) be vectors in \(\mathrm{R}^{3}\). Find the orthogonal projection of \(\mathrm{u}\) on \(\mathrm{v}\) and the component of \(\mathrm{u}\) orthogonal to v.

Chapter 14

Use the Gram-Schmidt process to transform \([(1,0,1),(1,2,-2),(2,-1,1)]\) into an orthogonal basis for \(\mathrm{R}^{3}\). Assume the standard inner product.

Chapter 14

Let \(\mathrm{u}=(4,0,1,2,0), \mathrm{v}=(2,1,-1,1,1) .\) Find: a) $\mathrm{u} \cdot \mathrm{v} ; \mathrm{b})\|\mathrm{u}\|,\|\mathrm{v}\| ; \mathrm{c}\( ) the projection of \)\mathrm{u}\( onto \)\mathrm{v}$ and the projection of u orthogonal to \(\mathrm{v}\).

Join over 22 million students in learning with our Vaia App

The first learning app that truly has everything you need to ace your exams in one place.

  • Flashcards & Quizzes
  • AI Study Assistant
  • Smart Note-Taking
  • Mock-Exams
  • Study Planner
Join over 22 million students in learning with our Vaia App Join over 22 million students in learning with our Vaia App

Recommended explanations on Math Textbooks