Americas
Europe
Problem 301
Given $\mathrm{A}(\mathrm{t})=\begin{array}{rr}\mid \mathrm{t}^{2} & \cos \mathrm{t} \mid \\ \mid \mathrm{e}^{\mathrm{t}} & \sin \mathrm{t} \mid\end{array}$ Find \((\mathrm{d} \mathrm{A} / \mathrm{dt})\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.
Show that $\mathrm{e}^{\mathrm{At}} \mathrm{e}^{\mathrm{Bt}}=\mathrm{e}^{(\mathrm{A}+\mathrm{B}) \mathrm{t}}$ if, and only if, the matrices \(\mathrm{A}\) and B commute, i.e., \(A B=B A\).
Give the matrix \(\mathrm{A}=|0 \quad 1|\) \(18 \quad-2 \mid\) find \(\mathrm{e}^{\mathrm{At}}\)
\begin{tabular}{l} Given $\mathrm{A}(\mathrm{t})=\begin{array}{lcc}1 & \sin t & \cos t & t \mid \\\ & \mid(\sin t / t) & e^{t} & t^{2} \mid \\ & \mid 1 & 0 & t^{3}\end{array} \quad(t \neq 0)$ \\ \hline \end{tabular} Find \((\mathrm{d} \mathrm{A} / \mathrm{dt})\).
a) If $\quad \mathrm{S}_{\mathrm{k}}=\begin{array}{cc}11 / \mathrm{k} & 1-1 / \mathrm{k}^{2} \mid \mathrm{k}=1,2, \ldots \\ 12 & 1+1 / \mathrm{k} \mid\end{array}$ find \(\lim _{\mathrm{k} \rightarrow \infty} \mathrm{S}_{\mathrm{k}}\) b) If \(\quad A_{K}=\mid 1 / k !\) \(01, \mathrm{k}=0,1, \ldots\) \(\mid 1 / 2^{\mathrm{k}} \quad\) ? find \(^{\infty} \Sigma_{\mathrm{k}=0} \mathrm{~A}_{\mathrm{k}}\) -
Find \(\mathrm{f}(\mathrm{A})\) where \(\mathrm{A}=|1 \quad-2|\) $$ 14 $$ and \(\mathrm{f}(\mathrm{t})=\mathrm{t}^{2}-3 \mathrm{t}+7 .\)
The first learning app that truly has everything you need to ace your exams in one place.