Americas
Europe
Problem 293
Let the linear operator \(\mathrm{T}\) be nilpotent of degree 4 on \(\mathrm{C}^{6}\), \(\mathrm{T} \neq 0^{\rightarrow}\). Find the Jordan canonical form of \(\mathrm{T}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.
Find the Jordan Canonical form of $\begin{array}{rrrrrrrrrrrr}15 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 01 \\\ 10 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 01 \\ 11 & 0 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 01 \\ 10 & 1 & 0 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 01 \\\ 10 & 0 & 1 & 0 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 01 \\ 10 & 0 & 0 & 1 & 0 & 5 & 0 & 0 & 0 & 0 & 0 & 01 \\ A=10 & 0 & 0 & 0 & 1 & 0 & 5 & 0 & 0 & 0 & 0 & 01 \\\ 10 & 0 & 0 & 0 & 0 & 1 & 0 & 5 & 0 & 0 & 0 & 01 \\ 10 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 2 & 0 & 0 & 01 \\ 10 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 2 & 0 & 01 \\\ 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 2 & 01 \\ 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 21\end{array}$
Determine all possible Jordan canonical forms for a linear operator \(\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}\) whose characteristic polynomial is \(\mathrm{f}(\lambda)=(\lambda-2)^{3}(\lambda-5)^{2}\)
Define Jordan block and Jordan form matrix.
State the primary decomposition theorem. Verify that it is true by adducing an example.
Find the Jordan matrix of $$ A=\begin{array}{lll} 13 & 1 & -3 \mid \\ \mid-7 & -2 & 9 \mid \\ 1-2 & -1 & 4 \mid \end{array} $$
The first learning app that truly has everything you need to ace your exams in one place.