Americas
Europe
Problem 16
Can the matrix $E = \begin{array}{ll}\mid 3 & 1 \mid \\ \mid 1 & -1 \mid\end{array}$ be written as a linear combination of the matrices $\begin{array}{rl}\mathrm{m}_{1}=\mid 1 & 1\left|, \quad \mathrm{~m}_{2}=\right| 0 & 0 \mid & \mathrm{m}_{3}=\mid 0 & 2 \\ \mid 1 & 0 \mid & \mid 1 & 1 \mid & \mid 0 & -1 \mid\end{array}$ and \(\begin{array}{rc}\mathrm{m}_{4}=\mid 0 & 1 \mid \\ \mid 1 & 0\end{array}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.
Does the space \(\mathrm{V}\) of potential functions of the nth degree form a vector space over the field of real numbers? Addition and scalar multiplication are as defined below: i) $\mathrm{f}(\mathrm{x}, \mathrm{y})+\mathrm{g}(\mathrm{x}, \mathrm{y})=(\mathrm{f}+\mathrm{g})\left(\mathrm{x}_{1} \mathrm{y}\right)$ for \(\mathrm{f}, \mathrm{g} \in \mathrm{v}\) ii) \(c[f(x, y)]=c f(x, y)\)
Find the norm of the three dimensional vector \(\mathrm{u}=(-3,2,1)\) and the distance between the points \((-3,2,1)\) and \((4,-3,1)\).
What is the usual basis for the vector space \(\mathrm{V}\) of all real $2 \times 3$ matrices?
The standard basis for \(R^{3}\) is $$ \begin{aligned} \mathrm{B}_{\mathrm{s}}=\\{&|1||0||0|\\} \\ \\{&|0||1||0|\\} \\ \\{&|0||0||1|\\} \end{aligned} $$
Show that \(\mathrm{V}\), the set of all functions from a set $\mathrm{S} \neq \boldsymbol{c}\( to the field \)R$, is a vector space under the following operations: if \(\mathrm{f}(\mathrm{s})\) and $\mathrm{g}(\mathrm{s}) \in \mathrm{V}$, then $(\mathrm{f}+\mathrm{g})(\mathrm{s})=\mathrm{f}(\mathrm{s})+\mathrm{g}(\mathrm{s}) .\( If \)\mathrm{c}$ is a scalar from \(R\), then \((c f)(s)=c f(s)\).
The first learning app that truly has everything you need to ace your exams in one place.