Suggested languages for you:

Americas

Europe

Q19

Expert-verifiedFound in: Page 82

Book edition
Student Edition

Author(s)
Ray C. Jurgensen, Richard G. Brown, John W. Jurgensen

Pages
227 pages

ISBN
9780395977279

Find the values $x$ of $y$ and

Values are $\mathit{x}\mathbf{=}\mathbf{30}$ and $\mathit{y}\mathbf{=}\mathbf{5}$

Arrowheads denotes line segment $\overline{AB},\overline{CD}$, and $\overline{EF}$ are parallel

Line segment $\overline{BD}$ is transversal to the parallel lines $\overline{AB},\overline{CD}$

Line segment $\overline{DF}$ is perpendicular to the parallel lines $\overline{CD},\overline{EF}$

$\angle ABD$ and $\angle BDC$ forms a pair of same-side interior angles

Theorem 3-3: If two parallel lines are cut by a transversal then the same-side interior angles are supplementary.

$m\angle ABC+m\angle BDC=180$

$70+4x-2y=180$

$4x-2y=180-70$

$4x-2y=110\text{}\left(1\right)$

$\angle CDF$ and $\angle DFE$ forms a pair of same-side interior angles

Theorem 3-3: If two parallel lines are cut by a transversal then the same-side interior angles are supplementary.

$m\angle CDF+m\angle DFE=180$

$4x+2y+50=180$

$4x+2y=180-50$

$4x+2y=130\text{}\left(2\right)$

$4x-2y=110\phantom{\rule{0ex}{0ex}}\overline{)4x-2y=130}\phantom{\rule{0ex}{0ex}}8x=110\phantom{\rule{0ex}{0ex}}x=30$

$4\left(30\right)-2y=110\phantom{\rule{0ex}{0ex}}-2y=110-120\phantom{\rule{0ex}{0ex}}y=\frac{-10}{-2}\phantom{\rule{0ex}{0ex}}y=5$

Thus, $x=30$ and $y=5$

94% of StudySmarter users get better grades.

Sign up for free