Suggested languages for you:

Americas

Europe

Q2.

Expert-verifiedFound in: Page 485

Book edition
Student Edition

Author(s)
Ray C. Jurgensen, Richard G. Brown, John W. Jurgensen

Pages
227 pages

ISBN
9780395977279

**Copy and complete the table below for the regular square pyramid.**

$\begin{array}{cc}\text{Height},\text{\hspace{0.17em}}h& 12\\ \text{Slant\hspace{0.17em}\hspace{0.17em}Height},\text{\hspace{0.17em}}l& 13\\ \text{Base\hspace{0.17em}\hspace{0.17em}edge}& \\ \text{Lateral\hspace{0.17em}\hspace{0.17em}edge}& \end{array}$

$\begin{array}{cc}\text{Height},\text{\hspace{0.17em}}h& 12\\ \text{Slant\hspace{0.17em}\hspace{0.17em}Height},\text{\hspace{0.17em}}l& 13\\ \text{Base\hspace{0.17em}\hspace{0.17em}edge}& 10\\ \text{Lateral\hspace{0.17em}\hspace{0.17em}edge}& \sqrt{194}\end{array}$

The height and slant height of a regular square pyramid are 12 and 13 unit respectively.

The base edge is given by:

$\text{Base edge}=2\sqrt{{\left(l\right)}^{2}-{\left(h\right)}^{2}}$

And the lateral edge is given by:

$\text{lateral edge}=\sqrt{{\left(l\right)}^{2}+{\left(\frac{\text{base edge}}{2}\right)}^{2}}$

Substitute all the given values in the formula.

$\begin{array}{c}\text{Base edge}=2\sqrt{{\left(13\right)}^{2}-{\left(12\right)}^{2}}\text{[substitute]}\\ =2\sqrt{169-144}\text{[square]}\\ =2\sqrt{25}\text{[subtract]}\\ =10\text{[simplify]}\end{array}$

And

$\begin{array}{c}\text{Lateral edge}=\sqrt{{\left(13\right)}^{2}+{\left(5\right)}^{2}}\text{[substitute]}\\ =\sqrt{194}\text{[simplify]}\end{array}$

94% of StudySmarter users get better grades.

Sign up for free