 Suggested languages for you:

Europe

Answers without the blur. Sign up and see all textbooks for free! Q2.

Expert-verified Found in: Page 485 ### Geometry

Book edition Student Edition
Author(s) Ray C. Jurgensen, Richard G. Brown, John W. Jurgensen
Pages 227 pages
ISBN 9780395977279 # Copy and complete the table below for the regular square pyramid.$\begin{array}{cc}\text{Height},\text{\hspace{0.17em}}h& 12\\ \text{Slant\hspace{0.17em}\hspace{0.17em}Height},\text{\hspace{0.17em}}l& 13\\ \text{Base\hspace{0.17em}\hspace{0.17em}edge}& \\ \text{Lateral\hspace{0.17em}\hspace{0.17em}edge}& \end{array}$

$\begin{array}{cc}\text{Height},\text{\hspace{0.17em}}h& 12\\ \text{Slant\hspace{0.17em}\hspace{0.17em}Height},\text{\hspace{0.17em}}l& 13\\ \text{Base\hspace{0.17em}\hspace{0.17em}edge}& 10\\ \text{Lateral\hspace{0.17em}\hspace{0.17em}edge}& \sqrt{194}\end{array}$

See the step by step solution

## Step 1. Given information.

The height and slant height of a regular square pyramid are 12 and 13 unit respectively.

## Step 2. Write the concept.

The base edge is given by:

$\text{Base edge}=2\sqrt{{\left(l\right)}^{2}-{\left(h\right)}^{2}}$

And the lateral edge is given by:

$\text{lateral edge}=\sqrt{{\left(l\right)}^{2}+{\left(\frac{\text{base edge}}{2}\right)}^{2}}$

## Step 3. Determine the values.

Substitute all the given values in the formula.

$\begin{array}{c}\text{Base edge}=2\sqrt{{\left(13\right)}^{2}-{\left(12\right)}^{2}}\text{[substitute]}\\ =2\sqrt{169-144}\text{[square]}\\ =2\sqrt{25}\text{[subtract]}\\ =10\text{[simplify]}\end{array}$

And

$\begin{array}{c}\text{Lateral edge}=\sqrt{{\left(13\right)}^{2}+{\left(5\right)}^{2}}\text{[substitute]}\\ =\sqrt{194}\text{[simplify]}\end{array}$ ### Want to see more solutions like these? 