Americas
Europe
Problem 121
Given: $\underline{C A} \cong \underline{D B} \cdot \underline{C B} \cong \underline{D A} .\( Prove \)\triangle A B C \cong \triangle B A D$.
What do you think about this solution?
We value your feedback to improve our textbook solutions.
$\underline{\mathrm{DB}} \cong \underline{\mathrm{EA}}, \underline{\mathrm{AD}} \cong \underline{\mathrm{BE}} .\( Prove: \)\angle \mathrm{DAB} \cong \angle \mathrm{EBA}$
Prove the median of the base of an isosceles triangle is perpendicular to the base.(In the figure, \(\Delta \mathrm{ABC}\) is isosceles, such that \(\underline{\mathrm{CA}} \cong \underline{\mathrm{CB}}\), and \(\underline{\mathrm{CM}}\) is the median to base \(\underline{\mathrm{AB}}\). Prove \(\underline{C M} \perp \underline{A B}\).)
Let \(\mathrm{ABC}\) be an equilateral triangle. Let \(\mathrm{D}\) be the midpoint of \(\underline{A B}\). Prove that $\triangle D C B \cong \triangle D C A\(. What kind of triangle is \)\triangle \mathrm{DCB}$ ? What can be said about \(\angle \mathrm{ACD}\) and \(\angle \mathrm{BCD} ?\) (See Figure.)
Given: \(\mathrm{DC} \cong \mathrm{BA}, \mathrm{AD} \cong \mathrm{CB}\). Prove: \(\triangle \mathrm{ABD} \cong \Delta \mathrm{CDB}\)
Prove: the median drawn to the base of an isosceles triangle bisects the vertex angle.
The first learning app that truly has everything you need to ace your exams in one place.