Americas
Europe
Problem 120
LET \(A B C D\) be a quadrilateral in which \(A D=B C\) and \(\mathrm{AB}=\mathrm{CD}\). Let its diagonals, \(\underline{\mathrm{AC}}\) and \(\underline{\mathrm{BD}}\), intersect at point E. a) Prove that $\triangle \mathrm{ABC} \cong \Delta \mathrm{CDA} ; \mathrm{b}\( ) Prove that \)\angle \mathrm{DAC} \cong \angle \mathrm{BCA}$; c) Prove that \(\triangle \mathrm{ABD} \cong \Delta \mathrm{CDB} ; \mathrm{d}\) ) Prove that \(\angle \mathrm{ADB} \cong \angle \mathrm{CBD}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.
$\underline{\mathrm{DB}} \cong \underline{\mathrm{EA}}, \underline{\mathrm{AD}} \cong \underline{\mathrm{BE}} .\( Prove: \)\angle \mathrm{DAB} \cong \angle \mathrm{EBA}$
Let \(\mathrm{ABC}\) be an equilateral triangle. Let \(\mathrm{D}\) be the midpoint of \(\underline{A B}\). Prove that $\triangle D C B \cong \triangle D C A\(. What kind of triangle is \)\triangle \mathrm{DCB}$ ? What can be said about \(\angle \mathrm{ACD}\) and \(\angle \mathrm{BCD} ?\) (See Figure.)
Given: QS intersects \(\underline{P R}\) at \(\mathrm{T}\) such that \(\mathrm{RQ}=\mathrm{RS}\) and \(\mathrm{QT}=\mathrm{ST}\) Prove: \(\underline{\text { TP }}\) bisects \(\angle \mathrm{SPQ}\).
Let \(\triangle \mathrm{ABC}\) be an equilateral triangle and let \(\mathrm{D}\) be the midpoint of \(\underline{A B}\). In \(\triangle D C B\), what are the measures of \(\angle B D C\), \(\angle \mathrm{DCB}\), and \(\angle \mathrm{DBC}\) ? If \(\mathrm{BC}=2\), what does \(\mathrm{DB}\) equal?
Given: $\underline{C A} \cong \underline{D B} \cdot \underline{C B} \cong \underline{D A} .\( Prove \)\triangle A B C \cong \triangle B A D$.
The first learning app that truly has everything you need to ace your exams in one place.