Americas
Europe
Problem 188
Given: Point \(P\) is in the interior of \(\triangle A B C\). Prove: $\mathrm{AP}+\mathrm{PB}+\mathrm{PC}>1 / 2(\mathrm{AB}+\mathrm{AC}+\mathrm{BC})$
What do you think about this solution?
We value your feedback to improve our textbook solutions.
Point \(\mathrm{P}\) is in the exterior of \(\triangle \mathrm{ABC}\), in the opposite half plane of \(\mathrm{BC}\) from \(\mathrm{A}\), such that \(\mathrm{BP}=\mathrm{CP}\). $\mathrm{m} \angle \mathrm{ABC}>\mathrm{m} \angle \mathrm{ACB}$. Show \(\mathrm{m} \angle \mathrm{ABP}>\mathrm{m} \angle \mathrm{ACP}\).
Given: \(\triangle \mathrm{ABC} ; \mathrm{D}\) is a point between \(\mathrm{A}\) and \(\mathrm{C} ; \mathrm{BD}>\mathrm{AB}\) Prove: \(\mathrm{BC}>\mathrm{AB}\)
If the lengths of two sides of a triangle are 10 and 14, the length of the third side may be which of the following: (a) 2 (b) 4(c) 22 (d) 24 ?
Given: \(\mathrm{AM}\) is the median of $\triangle \mathrm{ABC} ; \mathrm{m} \angle 2>\mathrm{m} \angle 1$. Prove: \(\mathrm{AC}>\mathrm{AB}\)
Given: Quadrilateral \(\mathrm{ABCD}\) and straight rays \(\underline{\mathrm{ADF}}\) and \(\underline{\mathrm{ABE}}\). Prove: $\mathrm{m} \angle \mathrm{EBC}+\mathrm{m} \angle \mathrm{FDC}>1 / 2(\mathrm{~m} \angle \mathrm{A}+\mathrm{m} \angle \mathrm{C})$. (Hint: Draw \(\underline{\mathrm{AC}}\) )
The first learning app that truly has everything you need to ace your exams in one place.