Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q15E

Expert-verified
Fundamentals Of Differential Equations And Boundary Value Problems
Found in: Page 140
Fundamentals Of Differential Equations And Boundary Value Problems

Fundamentals Of Differential Equations And Boundary Value Problems

Book edition 9th
Author(s) R. Kent Nagle, Edward B. Saff, Arthur David Snider
Pages 616 pages
ISBN 9780321977069

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Use the fourth-order Runge–Kutta subroutine with h = 0.1 to approximate the solution to\({\bf{y' = cos}}\;{\bf{5y - x,y(0) = 0}}\),at the points x = 0, 0.1, 0.2, . . ., 3.0. Use your answers to make a rough sketch of the solution on\(\left[ {{\bf{0,3}}} \right]\).

\({{\rm{x}}_{\rm{n}}}\)

\({{\rm{y}}_{\rm{n}}}\)

0.5

0.21462

1.0

0.13890

1.5

-0.02668

2.0

-0.81879

2.5

-1.69491

3.0

-2.99510

The rough sketch is given below.

See the step by step solution

Step by Step Solution

Step 1: Find the values of \({{\bf{k}}_{\bf{i}}}{\bf{.i = 1,2,3,4}}\)

Using the improved 4th order Runge-Kutta subroutine.

Since \({\bf{f(x,y) = cos}}\;{\bf{5y - x}}\) and \({\bf{x = }}{{\bf{x}}_{\bf{0}}}{\bf{ = 0,y = }}{{\bf{y}}_{\bf{o}}}{\bf{ = 0}}\) and h = 0.1, M = 30

\(\begin{array}{l}{{\bf{k}}_{\bf{1}}}{\bf{ = h}}{\rm{f}}{\bf{(x,y) = 0}}{\bf{.1(cos5y - x)}}\\{{\bf{k}}_{\bf{2}}}{\bf{ = hf}}\left( {{\bf{x + }}\frac{{\bf{h}}}{{\bf{2}}}{\bf{,y + }}\frac{{{{\bf{k}}_{\bf{1}}}}}{{\bf{2}}}} \right){\bf{ = 0}}{\bf{.1}}\left( {{\bf{cos}}\left( {{\bf{5y + }}\frac{{{{\bf{k}}_{\bf{1}}}}}{{\bf{2}}}} \right){\bf{ - (x + 0}}{\bf{.05)}}} \right)\\{{\bf{k}}_{\bf{3}}}{\bf{ = hf}}\left( {{\bf{x + }}\frac{{\bf{h}}}{{\bf{2}}}{\bf{,y + }}\frac{{{{\bf{k}}_{\bf{2}}}}}{{\bf{2}}}} \right){\bf{ = 0}}{\bf{.1}}\left( {{\bf{cos}}\left( {{\bf{5y + }}\frac{{{{\bf{k}}_{\bf{2}}}}}{{\bf{2}}}} \right){\bf{ - (x + 0}}{\bf{.05)}}} \right)\\{{\bf{k}}_{\bf{4}}}{\bf{ = hf}}\left( {{\bf{x + h,y + }}{{\bf{k}}_{\bf{3}}}} \right){\bf{ = 0}}{\bf{.1(y + }}{{\bf{k}}_{\bf{3}}}{\bf{)(cos(5(y + }}{{\bf{k}}_{\bf{3}}}{\bf{) - (x + 0}}{\bf{.05))}}\\{{\bf{k}}_{\bf{1}}}{\bf{ = h(x,y) = 0}}{\bf{.1}}\\{{\bf{k}}_{\bf{2}}}{\bf{ = hf}}\left( {{\bf{x + }}\frac{{\bf{h}}}{{\bf{2}}}{\bf{,y + }}\frac{{{{\bf{k}}_{\bf{1}}}}}{{\bf{2}}}} \right){\bf{ = 0}}{\bf{.091891}}\\{{\bf{k}}_{\bf{3}}}{\bf{ = hf}}\left( {{\bf{x + }}\frac{{\bf{h}}}{{\bf{2}}}{\bf{,y + }}\frac{{{{\bf{k}}_{\bf{2}}}}}{{\bf{2}}}} \right){\bf{ = 0}}{\bf{.092373}}\\{{\bf{k}}_{\bf{4}}}{\bf{ = hf}}\left( {{\bf{x + h,y + }}{{\bf{k}}_{\bf{3}}}} \right){\bf{ = 0}}{\bf{.079522}}\end{array}\)

Step 2: Find the values of x and y

\(\begin{array}{c}{\bf{x = 0 + 0}}{\bf{.1 = 0}}{\bf{.1}}\\{\bf{y = 0 + }}\frac{{\bf{1}}}{{\bf{6}}}\left( {{{\bf{k}}_{\bf{1}}}{\bf{ + 2}}{{\bf{k}}_{\bf{2}}}{\bf{ + 2}}{{\bf{k}}_{\bf{3}}}{\bf{ + }}{{\bf{k}}_{\bf{4}}}} \right)\\{\bf{ = 0}}{\bf{.091342}}\end{array}\)

The solution of the given IVP at x=0.1 is approx. 0.091.

Step 3: Evaluate the other values of x and y

x

y

x

y

x

y

0.2

0.157

1.2

0.087

2.2

-1.173

0.3

0.195

1.3

0.055

2.3

-1.300

0.4

0.212

1.4

0.019

2.4

-1.454

0.5

0.215

1.5

-0.027

2.5

-1.695

0.6

0.208

1.6

-0.086

2.6

-2.037

0.7

0.196

1.7

-0.170

2.7

-2.309

0.8

0.180

1.8

-0.306

2.8

-2.501

0.9

0.161

1.9

-0.535

2.9

-2.698

1

0.139

2

-0.819

3

-2.995

1.1

0.114

2.1

-0.029

Step 4: Plot the Graph

Hence the solution is

\({{\rm{x}}_{\rm{n}}}\)

\({{\rm{y}}_{\rm{n}}}\)

0.5

0.21462

1.0

0.13890

1.5

-0.02668

2.0

-0.81879

2.5

-1.69491

3.0

-2.99510

Most popular questions for Math Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.