Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q12RP

Expert-verified
Fundamentals Of Differential Equations And Boundary Value Problems
Found in: Page 416
Fundamentals Of Differential Equations And Boundary Value Problems

Fundamentals Of Differential Equations And Boundary Value Problems

Book edition 9th
Author(s) R. Kent Nagle, Edward B. Saff, Arthur David Snider
Pages 616 pages
ISBN 9780321977069

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Determine the inverse Laplace transform of the given function.

2s-1s2-4s+6

The solution is

L12(s2)+3(s2)2+(2)2(t)=2e2tcos2t+32e2tsin2t

See the step by step solution

Step by Step Solution

Step 1: Given Information

The given function value in s domain is 2s-1s2-4s+6

Step 2: Use partial fractions

Factorize the denominator of the given function as

s24s+6=s24s+4+2=s-12+22

The function becomes.2s-1(s2)2+(2)2Decompose the function as:

2s-1(s2)2+(2)2=2(s2)+3(s2)2+(2)2=2(s2)(s2)2+(2)2+322(s2)2+(2)2

Take inverse Laplace transform using L1sa(sa)2+b2(t)=eatcosbtand L1b(sa)2+b2(t)=eatsinbtas:

L12(s2)+3(s2)2+(2)2(t)=2e2tcos2t+32e2tsin2t

Therefore,the required inverse Laplace transform is:

L12(s2)+3(s2)2+(2)2(t)=2e2tcos2t+32e2tsin2t

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.