Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q1E

Expert-verified
Fundamentals Of Differential Equations And Boundary Value Problems
Found in: Page 281
Fundamentals Of Differential Equations And Boundary Value Problems

Fundamentals Of Differential Equations And Boundary Value Problems

Book edition 9th
Author(s) R. Kent Nagle, Edward B. Saff, Arthur David Snider
Pages 616 pages
ISBN 9780321977069

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Logistic Model. In Section 3.2 we discussed the logistic equation\(\frac{{{\bf{dp}}}}{{{\bf{dt}}}}{\bf{ = A}}{{\bf{p}}_{\bf{1}}}{\bf{p - A}}{{\bf{p}}^{\bf{2}}}{\bf{,p(0) = }}{{\bf{p}}_{\bf{o}}}\)and its use in modeling population growth. A more general model might involve the equation\(\frac{{{\bf{dp}}}}{{{\bf{dt}}}}{\bf{ = A}}{{\bf{p}}_{\bf{1}}}{\bf{p - A}}{{\bf{p}}^{\bf{r}}}{\bf{,p(0) = }}{{\bf{p}}_{\bf{o}}}\)where r>1. To see the effect of changing the parameter r in (25), take \({{\bf{p}}_{\bf{1}}}\)= 3, A = 1, and \({{\bf{p}}_{\bf{o}}}\)= 1. Then use a numerical scheme such as Runge–Kutta with h = 0.25 to approximate the solution to (25) on the interval\(0 \le {\bf{t}} \le 5\) for r = 1.5, 2, and 3What is the limiting population in each case? For r >1, determine a general formula for the limiting population.

The general formula for the limiting population is\({{\bf{3}}^{\frac{{\bf{1}}}{{{\bf{r - 1}}}}}}\).

See the step by step solution

Step by Step Solution

Step 1: Find the value of p

Here\({p_1} = 3\), \(A = 1\), and \({p_o} = 1\) then the equation is:

\(\frac{{dp}}{{dt}} = 3p - {p^r}\)

Suppose\(r > 1\). So,

\(\begin{array}{c}\int {\frac{1}{{3p - {p^r}}}dp} = \int {dt} \\\smallint \frac{1}{{{p^r}\left( {3{p^{1 - r}} - 1} \right)}}dp = t + c\\\int {\frac{1}{{3\left( {1 - r} \right)u}}du} = t + c\\\frac{{\ln \left| u \right|}}{{3\left( {1 - r} \right)}} = t + c\\\frac{{\ln \left| {3{p^{1 - r}} - 1} \right|}}{{3(1 - r)}} = t + c\\\ln \left| {3{p^{1 - r}} - 1} \right| = 3\left( {1 - r} \right)t + c\\{p^{1 - r}} = \frac{{C{e^{3(1 - r)t}} + 1}}{3}\\p = {\left( {\frac{{C{e^{3(1 - r)t}} + 1}}{3}} \right)^{\frac{1}{{1 - r}}}}\end{array}\)

Here \(p\left( 0 \right) = {p_o} = {\rm{ }}1\) then

\(\begin{array}{c}{\bf{1 = }}{\left( {\frac{{{\bf{C + 1}}}}{{\bf{3}}}} \right)^{\frac{{\bf{1}}}{{{\bf{1 - r}}}}}}\\{\bf{C = 2}}\\{\bf{p = }}{\left( {\frac{{{\bf{2}}{{\bf{e}}^{{\bf{3(1 - r)t}}}}{\bf{ + 1}}}}{{\bf{3}}}} \right)^{\frac{{\bf{1}}}{{{\bf{1 - r}}}}}}\end{array}\)

Step 2: Apply limits

\(\begin{array}{c}\mathop {{\bf{lim}}}\limits_{t \to \infty } {\bf{p(t) = }}\mathop {{\bf{lim}}}\limits_{t \to \infty } {\left( {\frac{{{\bf{2}}{{\bf{e}}^{{\bf{3(1 - r)t}}}}{\bf{ + 1}}}}{{\bf{3}}}} \right)^{\frac{{\bf{1}}}{{{\bf{1 - r}}}}}}\\{\bf{ = }}{\left( {\frac{{2\mathop {{\bf{lim}}}\limits_{t \to \infty } {{\bf{e}}^{{\bf{3(1 - r)t}}}}{\bf{ + }}1}}{3}} \right)^{\frac{{\bf{1}}}{{{\bf{1 - r}}}}}}\\{\bf{ = }}{\left( {\frac{{\bf{1}}}{{\bf{3}}}} \right)^{\frac{{\bf{1}}}{{{\bf{1 - r}}}}}}\\{\bf{ = }}{{\bf{3}}^{\frac{{\bf{1}}}{{{\bf{r - 1}}}}}}\end{array}\)

Step 3: Find the result by applying the Runge-Kutta method.

Apply this method in Mat Lab.

T

R=1.5

R=2

R=3

0

1

1

1

1

4.3024

2.7277

1.7254

1.5

6.1387

2.9343

1.7319

2

7.444

2.985

1.732

3

8.6129

2.999

1.7321

4

8.911

3

1.732

5

8.980

3

1.732

Therefore, the general formula for the limiting population is\({{\bf{3}}^{\frac{{\bf{1}}}{{{\bf{r - 1}}}}}}\).

Most popular questions for Math Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.