Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q22E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 556
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

To find the values of \(x\).

The values of \(x\) is \(v\)

See the step by step solution

Step by Step Solution

Step 1: Concept of Dot Product

Formula Used:

Write the expression to find \({\rm{u}} \cdot {\rm{v}}\) in terms of \(\theta \).

\({\rm{u}} \cdot {\rm{v}} = |{\rm{u}}||{\rm{v}}|\cos \theta \)

Here,

\(|u|\)is the magnitude of vector \(u\),

\(|{\rm{v}}|\) is the magnitude of vector \(v\), and

\(\theta \) is the angle between vectors \(u\) and \(v\).

Step 2: Calculation of the dot product

The given vectors are,

\({\rm{a}} = \langle 2,1, - 1\rangle ,{\rm{b}} = \langle 1,x,0\rangle \) and \(\theta = {45^\circ }\)

Consider a general expression to find the dot product between two three-dimensional vectors.

\(\begin{aligned}{l}{\rm{a}} \cdot {\rm{b}} &= \left\langle {{a_1},{a_2},{a_2}} \right\rangle \cdot \left\langle {{b_1},{b_2},{b_2}} \right\rangle \\{\rm{a}} \cdot {\rm{b}} &= {a_1}{b_1} + {a_2}{b_2} + {a_3}{b_3}\end{aligned}\)

In the above equation, substitute \(2\) for \({a_1},1\) for \({a_2}, - 1\) for \({a_3},1\) for \({b_1},x\) for \({b_2}\) and \(0\) for \({b_3}\).

\(\begin{aligned}{l}{\rm{a}} \cdot {\rm{b}} &= (2)(1) + (1)(x) + ( - 1)(0)\\{\rm{a}} \cdot {\rm{b}} &= 2 + x + 0\\{\rm{a}} \cdot {\rm{b}} &= 2 + x\end{aligned}\)

Step 3: Calculation of the magnitude of the vector\(a\)and\(b\)

Consider a general expression to find the magnitude of a three-dimensional vector that is\(a = \left\langle {{a_1},{a_2},{a_3}} \right\rangle \).

\(|{\rm{a}}| = \sqrt {a_1^2 + a_2^2 + a_3^2} \)

In the above equation, substitute \(2\) for \({a_1},1\) for \({a_2}\) and \( - 1\) for \({a_3}\).

\(\begin{aligned}{l}|a| &= \sqrt {{{(2)}^2} + {{(1)}^2} + {{( - 1)}^2}} \\|a| &= \sqrt {4 + 1 + 1} \\|a| &= \sqrt 6 \end{aligned}\)

Similarly, consider a general expression to find the magnitude of a three-dimensional vector that is

\({\rm{b}} = \left\langle {{b_1},{b_2},{b_3}} \right\rangle \)

\(|{\rm{b}}| = \sqrt {b_1^2 + b_2^2 + b_3^2} \)

In the above equation, substitute \(1\) for \({b_1},x\) for \({b_2}\) and \(0\) for \({b_3}\).

\(\begin{aligned}{l}|{\rm{b}}| &= \sqrt {{{(1)}^2} + {{(x)}^2} + {{(0)}^2}} \\|{\rm{b}}| &= \sqrt {1 + {x^2}} \end{aligned}\)

Step 4: Calculation for the value of\(x\)

In the formula, substitute \(2 + x\) for \(a \cdot b,\sqrt 6 \) for \(|{\rm{a}}|,\sqrt {1 + {x^2}} \) for \(|{\rm{b}}|\) and \({45^\circ }\) for \(\theta \).

\(\begin{aligned}{l}2 + x &= (\sqrt 6 )\left( {\sqrt {1 + {x^2}} } \right)\cos \left( {{{45}^\circ }} \right)\\2 + x &= (\sqrt 6 )\left( {\sqrt {1 + {x^2}} } \right)\left( {\frac{1}{{\sqrt 2 }}} \right)\\2 + x &= (\sqrt 3 )\left( {\sqrt {1 + {x^2}} } \right)\end{aligned}\)

Take square on both sides.

Step 5: Simplification of the above equation for\(x\)

Solve this second order equation and find the values of \(x\) as follows.

\(\begin{aligned}{l}x &= \frac{{ - ( - 4) \pm \sqrt {{{( - 4)}^2} - 4(2)( - 1)} }}{{2(2)}}\\x &= \frac{{4 \pm \sqrt {16 + 8} }}{4}\\x &= \frac{{4 \pm \sqrt {24} }}{4}\\x &= \frac{{4 \pm 2\sqrt 6 }}{4}\end{aligned}\)

Expand the equation.

\(\begin{aligned}{l}x &= \frac{4}{4} \pm \frac{{2\sqrt 6 }}{4}\\x &= 1 \pm \frac{{\sqrt 6 }}{2}\\x &= 1 + \frac{{\sqrt 6 }}{2},1 - \frac{{\sqrt 6 }}{2}\end{aligned}\)

Thus, values of \(x\) are \(1 + \frac{{\sqrt 6 }}{2}\) and \(1 - \frac{{\sqrt 6 }}{2}\).

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.