Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q11E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 564
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Find the resultant vector of \((j - k) \times (k - i)\) using cross product.

The cross product \((j - k) \times (k - i)\) is\(i + j + k\).

See the step by step solution

Step by Step Solution

Step 1: Formula used

Consider the following property

\(\begin{array}{l}{\rm{j}} \times {\rm{k}} = {\rm{i}}\\{\rm{k}} \times {\rm{k}} = 0\\{\rm{j}} \times {\rm{i}} = - {\rm{k}}\\{\rm{k}} \times {\rm{i}} = {\rm{j}}\end{array}\)

Step 2: Find the resultant vector

As given,\((j - k) \times (k - i) \ldots \ldots \ldots (1)\)

Modify equation (1)

\(\begin{array}{l}({\rm{j}} - {\rm{k}}) \times (k - i) = ({\rm{j}} - {\rm{k}}) \times {\rm{k}} + ({\rm{j}} - {\rm{k}}) + ({\rm{j}} - {\rm{k}}) \times ( - {\rm{i}})\\({\rm{j}} - {\rm{k}}) \times (k - i) = ({\rm{j}} \times {\rm{k}}) + ( - {\rm{k}}) \times {\rm{k}} + {\rm{j}} \times ( - {\rm{i}}) + ( - {\rm{k}}) \times ( - {\rm{i}})\\({\rm{j}} - {\rm{k}}) \times (k - i) = ({\rm{j}} \times {\rm{k}}) + ( - 1)({\rm{k}} \times {\rm{k}}) + ( - 1)({\rm{j}} \times {\rm{i}}) + {( - 1)^2}({\rm{k}} \times {\rm{i}})\end{array}\)

Substitute \(i\) for \(j \times k,0\) for \(k \times k, - k\) for \(j \times i\) and \(j\) for \(k \times i\)

\(\begin{array}{l}({\rm{j}} - {\rm{k}}) \times ({\rm{k}} - {\rm{i}}) = {\rm{i}} + ( - 1)(0) + ( - 1)( - {\rm{k}}) + {( - 1)^2}({\rm{j}})\\({\rm{j}} - {\rm{k}}) \times ({\rm{k}} - {\rm{i}}) = {\rm{i}} - 0 + {\rm{k}} + {\rm{j}}\\({\rm{j}} - {\rm{k}}) \times ({\rm{k}} - {\rm{i}}) = {\rm{i}} + {\rm{j}} + {\rm{k}}\end{array}\)

Thus, the cross product \((j - k) \times (k - i)\) is \(i + j + k\).

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.