Americas
Europe
Q2RE
Expert-verified(a) How do you find the slope of a tangent to a parametric curve?
(b) How do you find the area under a parametric curve?
Parametric curves allow us to draw relationships between two or more numbers while also representing the directions or orientations of each quantity.
(a)
The parametric curve is represented as –
\({\rm{x = f(t), y = g(t)}}\)
Differentiate the functions with respect to \({\rm{t}}\)–
\(\frac{{{\rm{dx}}}}{{{\rm{dt}}}}{\rm{ = f'(t), }}\frac{{{\rm{dy}}}}{{{\rm{dt}}}}{\rm{ = g'(t)}}\)
Now use the chain rule to obtain the slope –
Slope of tangent\({\rm{ = }}\frac{{{\rm{dy}}}}{{{\rm{dx}}}}\)
\(\begin{aligned}{c}{\rm{ = }}\frac{{{\rm{dy}}}}{{{\rm{dt}}}} \cdot \frac{{{\rm{dx}}}}{{{\rm{dt}}}}\\{\rm{ = }}\frac{{{{{\rm{dy}}} \mathord{\left/
{\vphantom {{{\rm{dy}}} {{\rm{dt}}}}} \right.
\kern-\nulldelimiterspace} {{\rm{dt}}}}}}{{{{{\rm{dx}}} \mathord{\left/
{\vphantom {{{\rm{dx}}} {{\rm{dt}}}}} \right.
\kern-\nulldelimiterspace} {{\rm{dt}}}}}}{\rm{ = }}\frac{{{\rm{g'(t)}}}}{{{\rm{f'(t)}}}}\end{aligned}\)
Therefore, the result is obtained as \(\frac{{{\rm{g'(t)}}}}{{{\rm{f'(t)}}}}\).
(b)
The area under the curve \({\rm{y = F(x)}}\) from \({\rm{a}}\) to \({\rm{b}}\) is given by \({\rm{A = }}\int_{\rm{a}}^{\rm{b}} {{\rm{F(x)dx}}} \) where \({\rm{F(x)}} \ge {\rm{0}}\).
If curve is given by parametric equations –
\({\rm{x = f(t), y = g(t), \alpha }} \le {\rm{t}} \le {\rm{\beta }}\)
Then using previous formula for the area under parametric curve, it is obtained that –
\({\rm{A = }}\int_{\rm{a}}^{\rm{b}} {{\rm{ydx}}} {\rm{ = }}\int_{\rm{\alpha }}^{\rm{\beta }} {{\rm{g(t)f'(t)dt}}} \)
Therefore, the result is obtained as \({\rm{A = }}\int_{\rm{\alpha }}^{\rm{\beta }} {{\rm{g(t)f'(t)dt}}} \).
94% of StudySmarter users get better grades.
Sign up for free