Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q2RE

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 535
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

(a) How do you find the slope of a tangent to a parametric curve?

(b) How do you find the area under a parametric curve?

  1. For a parametric curve \({\rm{x = f(t), y = g(t),}}\) the slope of the tangent is \(\frac{{{\rm{g'(t)}}}}{{{\rm{f'(t)}}}}\).
  2. For a parametric curve \({\rm{x = f(t), y = g(t),}}\)the area under the curve is \({\rm{A = }}\int_{\rm{\alpha }}^{\rm{\beta }} {{\rm{g(t)f'(t)dt}}} \).
See the step by step solution

Step by Step Solution

Step 1: Concept Introduction

Parametric curves allow us to draw relationships between two or more numbers while also representing the directions or orientations of each quantity.

Step 2: Slope of tangent to Parametric Curve

(a)

The parametric curve is represented as –

\({\rm{x = f(t), y = g(t)}}\)

Differentiate the functions with respect to \({\rm{t}}\)–

\(\frac{{{\rm{dx}}}}{{{\rm{dt}}}}{\rm{ = f'(t), }}\frac{{{\rm{dy}}}}{{{\rm{dt}}}}{\rm{ = g'(t)}}\)

Now use the chain rule to obtain the slope –

Slope of tangent\({\rm{ = }}\frac{{{\rm{dy}}}}{{{\rm{dx}}}}\)

\(\begin{aligned}{c}{\rm{ = }}\frac{{{\rm{dy}}}}{{{\rm{dt}}}} \cdot \frac{{{\rm{dx}}}}{{{\rm{dt}}}}\\{\rm{ = }}\frac{{{{{\rm{dy}}} \mathord{\left/

{\vphantom {{{\rm{dy}}} {{\rm{dt}}}}} \right.

\kern-\nulldelimiterspace} {{\rm{dt}}}}}}{{{{{\rm{dx}}} \mathord{\left/

{\vphantom {{{\rm{dx}}} {{\rm{dt}}}}} \right.

\kern-\nulldelimiterspace} {{\rm{dt}}}}}}{\rm{ = }}\frac{{{\rm{g'(t)}}}}{{{\rm{f'(t)}}}}\end{aligned}\)

Therefore, the result is obtained as \(\frac{{{\rm{g'(t)}}}}{{{\rm{f'(t)}}}}\).

Step 3: Area under a Parametric Curve

(b)

The area under the curve \({\rm{y = F(x)}}\) from \({\rm{a}}\) to \({\rm{b}}\) is given by \({\rm{A = }}\int_{\rm{a}}^{\rm{b}} {{\rm{F(x)dx}}} \) where \({\rm{F(x)}} \ge {\rm{0}}\).

If curve is given by parametric equations –

\({\rm{x = f(t), y = g(t), \alpha }} \le {\rm{t}} \le {\rm{\beta }}\)

Then using previous formula for the area under parametric curve, it is obtained that –

\({\rm{A = }}\int_{\rm{a}}^{\rm{b}} {{\rm{ydx}}} {\rm{ = }}\int_{\rm{\alpha }}^{\rm{\beta }} {{\rm{g(t)f'(t)dt}}} \)

Therefore, the result is obtained as \({\rm{A = }}\int_{\rm{\alpha }}^{\rm{\beta }} {{\rm{g(t)f'(t)dt}}} \).

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.