Suggested languages for you:

Americas

Europe

Q10E

Expert-verifiedFound in: Page 734

Book edition
2nd

Author(s)
James Stewart

Pages
830 pages

ISBN
9781133112280

**Write the equations in cylindrical coordinates.**

**a. \({\rm{3x + 2y + z = 6}}\)**

**b. \({\rm{ - }}{{\rm{x}}^{\rm{2}}}{\rm{ - }}{{\rm{y}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^{^{\rm{2}}}}{\rm{ = 1}}\)**

- The equations in cylindrical coordinates \({\rm{z = 6 - 3rcos\theta - 2rsin\theta }}\)
- The equations in cylindrical coordinates \({\rm{ - }}{{\rm{r}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^{\rm{2}}}{\rm{ = 1}}\)

**A multiple integral is a definite integral of a function of many real variables in mathematics (particularly multivariable calculus), such as f(x, y) or f(x, y) (x, y, z). Integrals of a two-variable function over a region**

a.

To determine the cylindrical coordinates, apply the formulas below:

Remember that \({\rm{x = rcos}}\theta \) and \({\rm{y = rsin\theta }}\) in cylindrical coordinates. Because \({\rm{z = z}}\), we may substitute for x and\(\;y\) to get the following equation:

\({\rm{z = 6 - 3rcos\theta - 2rsin\theta }}\)

b.

Consider the given integral and simplify

In cylindrical coordinates, we employ the knowledge that \({\rm{x = rcos\theta }}\) and \({\rm{y = rsin\theta }}\) once more.

When we plug these into the equation, we get:

The equations in cylindrical coordinates \({\rm{ - }}{{\rm{r}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^{\rm{2}}}{\rm{ = 1}}\)

94% of StudySmarter users get better grades.

Sign up for free