Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q21E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 298
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Find the average value of \({\rm{f}}\)on\(\left( {{\rm{0,8}}} \right)\).

\(\frac{9}{8}\)

See the step by step solution

Step by Step Solution

Step 1: The graph of the function\(f\).

Step 2: Average value of a function is represented by this graph,

The average value of a function is represented by this graph is

\({{\rm{f}}_{{\rm{axe}}}}{\rm{ = }}\frac{{\rm{1}}}{{{\rm{b - a}}}}\sum\limits_{{\rm{i = 1}}}^{\rm{n}} {{\rm{f(}}{{\rm{x}}_{\rm{i}}}{\rm{)\Delta x}}} \)

Here \({\rm{\Delta x = }}\frac{{{\rm{b - a}}}}{{\rm{n}}}\) and \(n\)is number of terms.

\(\begin{aligned}{c}{{\rm{f}}_{{\rm{axe}}}}\frac{{\rm{1}}}{{{\rm{b - a}}}}\sum\limits_{{\rm{i &= 1}}}^{\rm{n}} {{\rm{f(}}{{\rm{x}}_{\rm{i}}}{\rm{)\Delta x}}} \\{\rm{ &= }}\frac{{\rm{1}}}{{{\rm{8 - 0}}}}\left( {{\rm{\Delta x}}\left( \begin{aligned}{l}{\rm{f}}\left( {{\rm{0}}{\rm{.5}}} \right){\rm{ + f}}\left( {{\rm{1}}{\rm{.5}}} \right){\rm{ + f}}\left( {{\rm{2}}{\rm{.5}}} \right){\rm{ + f}}\left( {{\rm{3}}{\rm{.5}}} \right)\\{\rm{ + f}}\left( {{\rm{4}}{\rm{.5}}} \right){\rm{ + f}}\left( {{\rm{5}}{\rm{.5}}} \right){\rm{ + f}}\left( {{\rm{6}}{\rm{.5}}} \right){\rm{ + f}}\left( {{\rm{7}}{\rm{.5}}} \right)\end{aligned} \right)} \right)\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{8}}}{\rm{.9 &= }}\frac{{\rm{9}}}{{\rm{8}}}\end{aligned}\)

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.