Suggested languages for you:

Americas

Europe

Q21E

Expert-verified
Found in: Page 298

### Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

# Find the average value of $${\rm{f}}$$on$$\left( {{\rm{0,8}}} \right)$$.

$$\frac{9}{8}$$

See the step by step solution

## Step 2: Average value of a function is represented by this graph,

The average value of a function is represented by this graph is

$${{\rm{f}}_{{\rm{axe}}}}{\rm{ = }}\frac{{\rm{1}}}{{{\rm{b - a}}}}\sum\limits_{{\rm{i = 1}}}^{\rm{n}} {{\rm{f(}}{{\rm{x}}_{\rm{i}}}{\rm{)\Delta x}}}$$

Here $${\rm{\Delta x = }}\frac{{{\rm{b - a}}}}{{\rm{n}}}$$ and $$n$$is number of terms.

\begin{aligned}{c}{{\rm{f}}_{{\rm{axe}}}}\frac{{\rm{1}}}{{{\rm{b - a}}}}\sum\limits_{{\rm{i &= 1}}}^{\rm{n}} {{\rm{f(}}{{\rm{x}}_{\rm{i}}}{\rm{)\Delta x}}} \\{\rm{ &= }}\frac{{\rm{1}}}{{{\rm{8 - 0}}}}\left( {{\rm{\Delta x}}\left( \begin{aligned}{l}{\rm{f}}\left( {{\rm{0}}{\rm{.5}}} \right){\rm{ + f}}\left( {{\rm{1}}{\rm{.5}}} \right){\rm{ + f}}\left( {{\rm{2}}{\rm{.5}}} \right){\rm{ + f}}\left( {{\rm{3}}{\rm{.5}}} \right)\\{\rm{ + f}}\left( {{\rm{4}}{\rm{.5}}} \right){\rm{ + f}}\left( {{\rm{5}}{\rm{.5}}} \right){\rm{ + f}}\left( {{\rm{6}}{\rm{.5}}} \right){\rm{ + f}}\left( {{\rm{7}}{\rm{.5}}} \right)\end{aligned} \right)} \right)\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{8}}}{\rm{.9 &= }}\frac{{\rm{9}}}{{\rm{8}}}\end{aligned}