Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q13E

Expert-verified
Discrete Mathematics and its Applications
Found in: Page 477
Discrete Mathematics and its Applications

Discrete Mathematics and its Applications

Book edition 7th
Author(s) Kenneth H. Rosen
Pages 808 pages
ISBN 9780073383095

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Question: Suppose that \(E, {F_1},{F_2}\,and {F_3}\)are events from a sample space S and that \({F_1},{F_2}\,and {F_3}\) are pair wise disjoint and their union is S. Find \(p\left( {\frac{{{F_1}}}{E}} \right)\)if \(p\left( {\frac{E}{{{F_1}}}} \right) = \frac{1}{8},p\left( {\frac{E}{{{F_2}}}} \right) = \frac{1}{4},p\left( {\frac{E}{{{F_3}}}} \right) = \frac{1}{6},p\left( {{F_1}} \right) = \frac{1}{4},p\left( {{F_2}} \right) = \frac{1}{4}\) and \(p\left( {{F_3}} \right) = \frac{1}{2}\)

Answer:

\(p\left( {\frac{{{F_1}}}{E}} \right) = 0.176\)

See the step by step solution

Step by Step Solution

Step 1: Given data

\(p\left( {\frac{E}{{{F_1}}}} \right) = \frac{1}{8},p\left( {\frac{E}{{{F_2}}}} \right) = \frac{1}{4},p\left( {\frac{E}{{{F_3}}}} \right) = \frac{1}{6},p\left( {{F_1}} \right) = \frac{1}{4},p\left( {{F_2}} \right) = \frac{1}{4}\)and \(p\left( {{F_3}} \right) = \frac{1}{2}\)

Step 2: Formula used   

\(p\left( {\frac{E}{{{E_1}}}} \right) = \frac{{p\left( {\frac{{{E_1}}}{E}} \right)p\left( E \right)}}{{p\left( {\frac{{{E_1}}}{E}} \right)p\left( E \right) + p\left( {\frac{{{E_2}}}{F}} \right)p\left( F \right)}}\)

Step 3: Calculating  

By the generalized version of Bayes’ theorem

\(p\left( {\frac{{{F_1}}}{E}} \right) = \frac{{p\left( {\frac{E}{{{F_1}}}} \right)p\left( {{F_1}} \right)}}{{p\left( {\frac{E}{{{F_1}}}} \right)p\left( {{F_1}} \right) + p\left( {\frac{E}{{{F_2}}}} \right)p\left( {{F_2}} \right) + p\left( {\frac{E}{{{F_3}}}} \right)p\left( {{F_3}} \right)}}\)

\( = \frac{{\left( {\frac{1}{8}} \right)\left( {\frac{1}{4}} \right)}}{{\left( {\frac{1}{8}} \right)\left( {\frac{1}{4}} \right) + \left( {\frac{1}{4}} \right)\left( {\frac{1}{4}} \right) + \left( {\frac{1}{6}} \right)\left( {\frac{1}{2}} \right)}}\)

\( = \frac{3}{{17}}\)

\( = 0.176\)

\(p\left( {\frac{{{F_1}}}{E}} \right) = 0.176\)

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.