Suggested languages for you:

Americas

Europe

Q 28.

Expert-verifiedFound in: Page 801

Book edition
1st

Author(s)
Peter Kohn, Laura Taalman

Pages
1155 pages

ISBN
9781429241861

Find $u+vandu-v$ also sketch $u,v,u+v,u-v$

role="math" localid="1649603943715" $u=\left(3,6,11\right)andv=\left(1,-2,3\right)$

The required value of $u+v=\left(4,4,14\right)andu-v=\left(2,8,8\right)$.

We have given vector $u=\left(3,6,11\right)andv=\left(1,-2,3\right)$

$u+v=\left({x}_{1}+{x}_{2},{y}_{1}+{y}_{2},{z}_{1}+{z}_{2}\right)\phantom{\rule{0ex}{0ex}}=\left(3+1,6+\left(-2\right),11+3\right)\phantom{\rule{0ex}{0ex}}=\left(4,4,14\right)\phantom{\rule{0ex}{0ex}}and\phantom{\rule{0ex}{0ex}}u-v=\left({x}_{1}-{x}_{2},{y}_{1}-{y}_{2},{z}_{1}-{z}_{2}\right)\phantom{\rule{0ex}{0ex}}=\left(3-1,6-\left(-2\right),11-3\right)\phantom{\rule{0ex}{0ex}}=\left(2,8,8\right)$

The graph of vector $u+v$.

The graph of vector $u-v$.

94% of StudySmarter users get better grades.

Sign up for free