Suggested languages for you:

Americas

Europe

Q 50.

Expert-verified
Found in: Page 615

### Calculus

Book edition 1st
Author(s) Peter Kohn, Laura Taalman
Pages 1155 pages
ISBN 9781429241861

# Determine whether the series $\sum _{n=4}^{\infty }\frac{4}{{11}^{n}}$ converges or diverges. Give the sum of the convergent series.

The series $\sum _{n=4}^{\infty }\frac{4}{{11}^{n}}$ converges to $\frac{2}{6655}$.

See the step by step solution

## Step 1. Given information.

Given a series $\sum _{n=4}^{\infty }\frac{4}{{11}^{n}}$.

## Step 2. Find if the series converges or not.

The index starts with 2, rather than 0.

Note that the convergence of a series depends not upon the first few terms but only upon the tail of the series.

The standard form of a geometric series is $\sum _{k=0}^{\infty }c{r}^{k}$.

The geometric series converges if and only if $\left|r\right|<1$.

Here, the series $\sum _{n=4}^{\infty }\frac{4}{{11}^{n}}$ has $c=\frac{4}{{11}^{4}}$ and $r=\frac{1}{11}$.

Since $r=\frac{1}{11}$, it follows that the series localid="1648886017183" $\sum _{n=4}^{\infty }\frac{4}{{11}^{n}}$ converges.

## Step 3. Find the value to which the series converges.

If the geometric series $\sum _{k=0}^{\infty }c{r}^{k}$ converges, it converges to $\frac{c}{1-r}$.

So, the series $\sum _{n=4}^{\infty }\frac{4}{{11}^{n}}$ converges to , that is $\frac{4}{1331}$ or equivalently $\frac{2}{6655}$.