Suggested languages for you:

Americas

Europe

Q. 39

Expert-verifiedFound in: Page 772

Book edition
1st

Author(s)
Peter Kohn, Laura Taalman

Pages
1155 pages

ISBN
9781429241861

Use Cartesian coordinates to express the equations for the hyperbolas determined by the conditions specified in Exercises 38–43.

$\text{foci}(\pm 6,0)\text{, directrices}x=\pm 1$

The equation is $\frac{{x}^{2}}{6}-\frac{{y}^{2}}{30}=1.$

The given values are,

$\text{foci}(\pm 6,0)\text{, directrices}x=\pm 1$

Now,

$\text{The focus points are}(6,0),(-6,0)\text{.}\phantom{\rule{0ex}{0ex}}\text{Center}=\left(\frac{6-6}{2},\frac{0+0}{2}\right)\left[\text{since mid point}=\left(\frac{{x}_{1}+{x}_{2}}{2},\frac{{y}_{1}+{y}_{2}}{2}\right)\right]\phantom{\rule{0ex}{0ex}}\text{Center}=(0,0)\phantom{\rule{0ex}{0ex}}\text{Given driectries are}x=\pm 1\text{.}\phantom{\rule{0ex}{0ex}}a=e\phantom{\rule{0ex}{0ex}}\text{Then}ae=6\phantom{\rule{0ex}{0ex}}{a}^{2}=6\phantom{\rule{0ex}{0ex}}c=\sqrt{(0-6{)}^{2}+(0-0{)}^{2}}\left[sinceD=\sqrt{{\left({x}_{2}-{x}_{1}\right)}^{2}+{\left({y}_{2}-{y}_{1}\right)}^{2}}\right]\phantom{\rule{0ex}{0ex}}c=6\phantom{\rule{0ex}{0ex}}\text{For a hyperbola,}{a}^{2}+{b}^{2}={c}^{2}\phantom{\rule{0ex}{0ex}}6+{b}^{2}={6}^{2}\phantom{\rule{0ex}{0ex}}{b}^{2}=30$

Now, substitute the obtained values in,

$\frac{(x-h{)}^{2}}{{a}^{2}}-\frac{(y-k{)}^{2}}{{b}^{2}}=1\text{where}(h,k)\text{is the center.}\phantom{\rule{0ex}{0ex}}\frac{(x-0{)}^{2}}{6}-\frac{(y-0{)}^{2}}{30}=1\left[\text{since}{a}^{2}=6,{b}^{2}=30\right]\phantom{\rule{0ex}{0ex}}\frac{{x}^{2}}{6}-\frac{{y}^{2}}{30}=1$

94% of StudySmarter users get better grades.

Sign up for free