Suggested languages for you:

Americas

Europe

Q 36.

Expert-verifiedFound in: Page 731

Book edition
1st

Author(s)
Peter Kohn, Laura Taalman

Pages
1155 pages

ISBN
9781429241861

In Exercises 32–47 convert the equations given in polar coordinates to rectangular coordinates.

$r=2\mathrm{cos}\theta $

The required equation is ${\left(x-1\right)}^{2}+{y}^{2}=1$.

The given equation in polar coordinates is:

$r=2\mathrm{cos}\theta $

$r=2\mathrm{cos}\theta $

First, multiply both sides by* r,*

${r}^{2}=2r\mathrm{cos}\theta \phantom{\rule{0ex}{0ex}}{r}^{2}=2x\left[\mathrm{Since}r\mathrm{cos}\theta =x\right]\phantom{\rule{0ex}{0ex}}{x}^{2}+{y}^{2}=2x\left[Since{r}^{2}={x}^{2}+{y}^{2}\right]$

Now add $-2x$ on both sides of the equation,

role="math" localid="1649264450788" ${x}^{2}+{y}^{2}-2x=2x-2x\phantom{\rule{0ex}{0ex}}{x}^{2}+{y}^{2}-2x=0$

Complete the square in *x*,

${\left(x-1\right)}^{2}+{y}^{2}-1=0$

now add 1 on both sides of the equation,

${\left(x-1\right)}^{2}+{y}^{2}-1+1=0+1\phantom{\rule{0ex}{0ex}}{\left(x-1\right)}^{2}+{y}^{2}=1$

Therefore, the equation in rectangular coordinates is ${\left(x-1\right)}^{2}+{y}^{2}=1$.

94% of StudySmarter users get better grades.

Sign up for free