Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q. 1

Expert-verified
Calculus
Found in: Page 119
Calculus

Calculus

Book edition 1st
Author(s) Peter Kohn, Laura Taalman
Pages 1155 pages
ISBN 9781429241861

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Finding roots of piecewise-defined functions: For each function f that follows, find all values x = c for which f(c) = 0. Check your answers by sketching a graph of f.

f(x)=4x2, if x<0x+1, if x0f(x)=x+1, if x<04x2, if x0f(x)=2x1, if x12x2+x3, if x>1

f(x)=4x2, if x<0x+1, if x0 has no roots.

f(x)=x+1, if x<04x2, if x0 we have x=-1,2

f(x)=2x1, if x12x2+x3, if x>1we have x=1,12

See the step by step solution

Step by Step Solution

Step 1. Given information

We have to find the roots of the following functions :

f(x)=4x2, if x<0x+1, if x0f(x)=x+1, if x<04x2, if x0f(x)=2x1, if x12x2+x3, if x>1

Step 2. Finding roots. 

let 4x2=0(x<0)x=2 let x+1=0(x0)x=1

It can not be considered as root.

f(x)=x+1:x<04x2:x0

Let x+1=0

x=-1

Let 4-x2=0x=+2

f(x)=2x1:x12x2+x3:x>1

Let 2x-1=0

x=12

Let role="math" localid="1649831777557" 2x2+x3=0(x>1)x=1,12

No roots.

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.