 Suggested languages for you:

Europe

Answers without the blur. Sign up and see all textbooks for free! Q. 0

Expert-verified Found in: Page 183 ### Calculus

Book edition 1st
Author(s) Peter Kohn, Laura Taalman
Pages 1155 pages
ISBN 9781429241861 # Q. Problem Zero: Read the section and make your own sum-mary of the material.

The Derivative of a Function f at $x=c$is defined as $f\text{'}\left(c\right)=\underset{h\to 0}{\mathrm{lim}}\frac{f\left(c+h\right)-f\left(c\right)}{h}\mathrm{or}f\text{'}\left(c\right)=\underset{z\to c}{\mathrm{lim}}\frac{f\left(z\right)-f\left(c\right)}{z-c}.$

If a function f is differentiable at $x=c$then $f\text{'}\left(c\right)=\underset{h\to 0}{\mathrm{lim}}\frac{f\left(c+h\right)-f\left(c\right)}{h}$must exist.

The left-hand derivative of a function f is defined as $f{\text{'}}_{-}\left(c\right)=\underset{h\to {0}^{-}}{\mathrm{lim}}\frac{f\left(c+h\right)-f\left(c\right)}{h}.$

The right-hand derivative of a function f is defined as $f{\text{'}}_{+}\left(c\right)=\underset{h\to {0}^{+}}{\mathrm{lim}}\frac{f\left(c+h\right)-f\left(c\right)}{h}.$

If a function is differentiable at any point then the function will also be continuous at that point.

The tangent line to the graph of a function f at $x=c$is defined as $y=f\left(c\right)+f\text{'}\left(c\right)\left(x-c\right)$where $f\text{'}\left(c\right)$is the slope.

See the step by step solution

## Step 1. Given information.

The topic of the given section is the Formal Definition of the Derivative.

## Step 2. Summary of section.

The Derivative of a Function f at $x=c$is defined as role="math" localid="1649815739115" $f\text{'}\left(c\right)=\underset{h\to 0}{\mathrm{lim}}\frac{f\left(c+h\right)-f\left(c\right)}{h}\mathrm{or}f\text{'}\left(c\right)=\underset{z\to c}{\mathrm{lim}}\frac{f\left(z\right)-f\left(c\right)}{z-c}$

If a function f is differentiable at $x=c$then role="math" localid="1649815763221" $f\text{'}\left(c\right)=\underset{h\to 0}{\mathrm{lim}}\frac{f\left(c+h\right)-f\left(c\right)}{h}$must exist.

The left-hand derivative of a function f is defined as role="math" localid="1649815781651" $f{\text{'}}_{-}\left(c\right)=\underset{h\to {0}^{-}}{\mathrm{lim}}\frac{f\left(c+h\right)-f\left(c\right)}{h}.$

The right-hand derivative of a function f is defined as $f{\text{'}}_{+}\left(c\right)=\underset{h\to {0}^{+}}{\mathrm{lim}}\frac{f\left(c+h\right)-f\left(c\right)}{h}.$

If a function is differentiable at any point then the function will also be continuous at that point.

The tangent line to the graph of a function f at $x=c$is defined as role="math" localid="1649815817628" $y=f\left(c\right)+f\text{'}\left(c\right)\left(x-c\right)$where $f\text{'}\left(c\right)$is the slope. ### Want to see more solutions like these? 