Suggested languages for you:

Americas

Europe

Q. 60

Expert-verifiedFound in: Page 327

Book edition
1st

Author(s)
Peter Kohn, Laura Taalman

Pages
1155 pages

ISBN
9781429241861

Given a simple proof that if n is a positive integer and c is any real number, then $\sum _{k=1}^{n}c=cn$

We proved $\sum _{k=1}^{n}c=cn$

We are given a relation $\sum _{k=1}^{n}c=cn$. We have to prove it

We have,

$\sum _{k=1}^{n}c\phantom{\rule{0ex}{0ex}}=c+c+......+c(ntimes)\phantom{\rule{0ex}{0ex}}=cn\phantom{\rule{0ex}{0ex}}=RHS$

Hence proved

94% of StudySmarter users get better grades.

Sign up for free