Americas
Europe
Problem 168
If \(\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}-2 \mathrm{x}+1\), find the given element \(\mathrm{m}\) the range, a) \(g(-2)\) b) \(\mathrm{g}(0)\) c) \(g(a+1)\) d) \(g(a-1)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.
Find the zeros of the function \(\mathrm{f}\) if $\mathrm{f}(\mathrm{x})=3 \mathrm{x}-5$.
If \(\mathrm{D}\) a \(\\{\mathrm{x} \mid \mathrm{x}\) is an integer and $-2 \leq \mathrm{x} \leq 1\\}\(, find the function \)\left\\{(\mathrm{x}, \mathrm{f}(\mathrm{x})) \mid \mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-3\right.$ and \(\mathrm{x}\) belongs to \(\left.\mathrm{D}\right\\}\)
If $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-\mathrm{x}-3, \mathrm{~g}(\mathrm{x})=\left(\mathrm{x}^{2}-1\right) /(\mathrm{x}+2)$, and \(\mathrm{h}(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})\), find \(\mathrm{h}(2)\)
Find the relation \(\mathrm{M}\) over set \(\mathrm{S}=\\{1,2,3\\}\) if $$ \mathrm{M}=\\{[\mathrm{x}, \mathrm{r}(\mathrm{x})]: \mathrm{r}(\mathrm{x})=2 \mathrm{x}-1\\} $$
Let the domain of $\mathrm{M}=\\{(\mathrm{x}, \mathrm{y}): \mathrm{y}=\mathrm{x}\\}$ be the set of real numbers. Is M a function?
The first learning app that truly has everything you need to ace your exams in one place.