Americas
Europe
Problem 1135
Establish the convergence or divergence of the series: $[1 /(1+\sqrt{1})]+[1 /(1+\sqrt{2})]+[1 /(1+\sqrt{3})]+[1 /(1+\sqrt{4})]+\ldots$
What do you think about this solution?
We value your feedback to improve our textbook solutions.
Determine the general term of the sequence: $$ 1 / 2,1 / 12,1 / 30,1 / 56,1 / 90, \ldots $$
Establish the convergence or divergence of the series: $\sin \pi / 2+1 / 4 \sin \pi / 4+1 / 9 \sin \pi / 6+1 / 16 \sin \pi / 8+\ldots .$
Determine the general term of the sequence: $$ 1 / 5^{3}, 3 / 5^{5}, 5 / 5^{7}, 7 / 5^{9}, 9 / 5^{11} $$
Test the series: $\left[1-3^{2} / 2^{2}\right]+\left[3^{4} /\left(2^{2} \cdot 4^{2}\right)\right]-\left[3^{6} /\left(2^{2} \cdot 4^{2} \cdot 6^{2}\right)\right]+\ldots \ldots \ldots$ by means of the ratio test. If this test fails, use another test.
Test the series: \(1+2 ! / 2^{2}+3 ! / 3^{3}+4 ! / 4^{4}+\ldots \ldots\) by means of the ratio test. If this test fails, use another test.
The first learning app that truly has everything you need to ace your exams in one place.