 Suggested languages for you:

Europe

Answers without the blur. Sign up and see all textbooks for free! Q5.

Expert-verified Found in: Page 774 ### Algebra 2

Book edition Middle English Edition
Author(s) Carter
Pages 804 pages
ISBN 9780079039903 # State the amplitude, period and phase shift of the function $y=\mathrm{tan}\left(\theta +60°\right)$ and then graph the function

The amplitude of $y=\mathrm{tan}\left(\theta +60°\right)$ is not defined.

The period of $y=\mathrm{tan}\left(\theta +60°\right)$ is $\pi$.

The phase shift of $y=\mathrm{tan}\left(\theta +60°\right)$ is $180{}^{\circ }\text{or}\pi$.

See the step by step solution

## Step 1. Write down the given information.

The given function is $y=\mathrm{tan}\left(\theta +60°\right)$.

## Step 2. Concept used.

A function of the form:

$y=a\mathrm{sin}b\left(\theta -h\right)+k,y=a\mathrm{cos}b\left(\theta -h\right)+k\text{and}y=a\mathrm{tan}b\left(\theta -h\right)+k$ has vertical shift $\left(k\right)$. And, a period of $\frac{360°}{\left|b\right|}\text{or}\frac{2\pi }{\left|b\right|}$ for sine, cosecant, secant and cosine functions and a period of $\frac{180°}{\left|b\right|}\text{or}\frac{\pi }{\left|b\right|}$ for tangent and cotangent function. The phase shift for the functions is $\left(h\right)$.

The amplitude of secant, cosecant, tangent and cotangent functions is not defined.

The equation for the midline is written as, $y=k$. A midline is a new reference line when the parent graph is stretched vertically up or down and then the graph oscillates about new reference line called the midline.

## Step 3. Evaluating vertical shift, amplitude, period and phase shift of the given function.

With the help of concept stated above, the amplitude, period and phase shift of the function is evaluated as:

The amplitude of $y=\mathrm{tan}\left(\theta +60°\right)$ is not defined.

The period of $y=\mathrm{tan}\left(\theta +60°\right)$ is $\frac{\pi }{\left|1\right|}=\pi$.

The phase shift of $y=\mathrm{tan}\left(\theta +60°\right)$ is $-60°$.

## Step 4. Sketch the graph of the function.

The graph of the function $y=\mathrm{tan}\left(\theta +60°\right)$ is shown below. ## Step 5. Conclusion.

The amplitude of $y=\mathrm{tan}\left(\theta +60°\right)$ is not defined.

The period of $y=\mathrm{tan}\left(\theta +60°\right)$ is $\pi$.

The phase shift of $y=\mathrm{tan}\left(\theta +60°\right)$ is $-60°$. ### Want to see more solutions like these? 