Suggested languages for you:

Americas

Europe

Q36.

Expert-verifiedFound in: Page 775

Book edition
Middle English Edition

Author(s)
Carter

Pages
804 pages

ISBN
9780079039903

**State the vertical shift, amplitude, period and phase shift of the function $y=6\mathrm{cot}\left[\frac{2}{3}\left(\theta -90\xb0\right)\right]+0.75$** **and then graph the function.**

The vertical shift of $y=6\mathrm{cot}\left[\frac{2}{3}\left(\theta -90\xb0\right)\right]+0.75$ is $0.75$.

The amplitude of $y=6\mathrm{cot}\left[\frac{2}{3}\left(\theta -90\xb0\right)\right]+0.75$ is **not defined**.

The period of $y=6\mathrm{cot}\left[\frac{2}{3}\left(\theta -90\xb0\right)\right]+0.75$ is $\frac{3\pi}{2}$.

The phase shift of $y=6\mathrm{cot}\left[\frac{2}{3}\left(\theta -90\xb0\right)\right]+0.75$ is $90\xb0$.

The given function is $y=6\mathrm{cot}\left[\frac{2}{3}\left(\theta -90\xb0\right)\right]+0.75$.

A function of the form:

$y=a\mathrm{sin}b\left(\theta -h\right)+k,y=a\mathrm{cos}b\left(\theta -h\right)+k\text{and}y=a\mathrm{tan}b\left(\theta -h\right)+k$ has vertical shift $\left(k\right)$. And period $\frac{360\xb0}{\left|b\right|}\text{or}\frac{2\pi}{\left|b\right|}$ for sine and cosine functions and a period of $\frac{180\xb0}{\left|b\right|}\text{or}\frac{\pi}{\left|b\right|}$ for tangent function. The phase shift for the functions is $\left(h\right)$.

The amplitude of tangent and cotangent functions is not defined.

With the help of concept stated above, the vertical shift, amplitude, period and phase shift of the function is evaluated as:

The vertical shift of the function $y=6\mathrm{cot}\left[\frac{2}{3}\left(\theta -90\xb0\right)\right]+0.75$ is $0.75$.

The amplitude of $y=6\mathrm{cot}\left[\frac{2}{3}\left(\theta -90\xb0\right)\right]+0.75$ is not defined.

The period of $y=6\mathrm{cot}\left[\frac{2}{3}\left(\theta -90\xb0\right)\right]+0.75$ is $\frac{\pi}{\left|\frac{2}{3}\right|}=\frac{3\pi}{2}$.

The phase shift of $y=6\mathrm{cot}\left[\frac{2}{3}\left(\theta -90\xb0\right)\right]+0.75$ is $90\xb0$.

The graph of the function $y=6\mathrm{cot}\left[\frac{2}{3}\left(\theta -90\xb0\right)\right]+0.75$ is shown below.

The vertical shift of the function $y=6\mathrm{cot}\left[\frac{2}{3}\left(\theta -90\xb0\right)\right]+0.75$ is $0.75$.

The amplitude of $y=6\mathrm{cot}\left[\frac{2}{3}\left(\theta -90\xb0\right)\right]+0.75$ is not defined.

The period of $y=6\mathrm{cot}\left[\frac{2}{3}\left(\theta -90\xb0\right)\right]+0.75$ is $\frac{3\pi}{2}$.

The phase shift of $y=6\mathrm{cot}\left[\frac{2}{3}\left(\theta -90\xb0\right)\right]+0.75$ is $90\xb0$.

94% of StudySmarter users get better grades.

Sign up for free