 Suggested languages for you:

Europe

Answers without the blur. Sign up and see all textbooks for free! Q20.

Expert-verified Found in: Page 641 ### Algebra 2

Book edition Middle English Edition
Author(s) Carter
Pages 804 pages
ISBN 9780079039903 # Evaluate each expression.$C\left(12,4\right)·C\left(8,3\right)$

The value of $C\left(12,4\right)·C\left(8,3\right)=27720$.

See the step by step solution

## Step 1. Given Information.

Given to evaluate the expression $C\left(12,4\right)·C\left(8,3\right)$.

## Step 2. Calculation.

When n objects are available and r are to be picked then the number of combinations is given by $C\left(n,r\right)=\frac{n!}{\left(n-r\right)!r!}$

Using the formula:

$\begin{array}{l}C\left(12,4\right)\cdot C\left(8,3\right)=\frac{12!}{\left(12-4\right)!4!}\cdot \frac{8!}{\left(8-3\right)!3!}\\ C\left(12,4\right)\cdot C\left(8,3\right)=\frac{12!}{8!4!}\cdot \frac{8!}{5!3!}\\ C\left(12,4\right)\cdot C\left(8,3\right)=\frac{12\cdot 11\cdot 10\cdot 9\cdot 8\cdot 7\cdot 6\cdot 5!}{8!\cdot 4\cdot 3\cdot 2\cdot 1}\cdot \frac{8!}{5!\cdot 3\cdot 2\cdot 1}\\ C\left(12,4\right)\cdot C\left(8,3\right)=27720\end{array}$

## Step 3. Conclusion.

Hence, the value of $C\left(12,4\right)\cdot C\left(8,3\right)=27720$. ### Want to see more solutions like these? 