Suggested languages for you:

Americas

Europe

Q35.

Expert-verifiedFound in: Page 227

Book edition
Middle English Edition

Author(s)
Carter

Pages
804 pages

ISBN
9780079039903

**Simplify $\frac{-12{m}^{4}{n}^{8}\left({m}^{3}{n}^{2}\right)}{36{m}^{3}n}$** **assuming that no variable equal to 0** **.**

The simplified value of expression is $-\frac{{m}^{4}{n}^{9}}{3}$.

The given expressiomn to simplify is $\frac{-12{m}^{4}{n}^{8}\left({m}^{3}{n}^{2}\right)}{36{m}^{3}n}$ .

Simplifying $\frac{-12{m}^{4}{n}^{8}\left({m}^{3}{n}^{2}\right)}{36{m}^{3}n}$ gives,

$\begin{array}{c}\frac{-12{m}^{4}{n}^{8}\left({m}^{3}{n}^{2}\right)}{36{m}^{3}n}=\frac{(-12)\left({m}^{4}{n}^{8}\right)\left({m}^{3}{n}^{2}\right)}{\left(36\right)\left({m}^{3}n\right)}\\ =-\frac{\left({m}^{4}{n}^{8}\right)\left({m}^{3}{n}^{2}\right)}{3\left({m}^{3}n\right)}\\ =-\frac{\left({m}^{4+3-3}\right)\left({n}^{8+2-1}\right)}{3}\mathrm{....}(\text{Using}\frac{{\left(x\right)}^{a}{\left(x\right)}^{b}}{{\left(x\right)}^{c}}={x}^{a+b-c})\\ =-\frac{{m}^{4}{n}^{9}}{3}\end{array}$

The simplified value of expression is $-\frac{{m}^{4}{n}^{9}}{3}$ .

94% of StudySmarter users get better grades.

Sign up for free