 Suggested languages for you:

Europe

Answers without the blur. Sign up and see all textbooks for free! Q66.

Expert-verified Found in: Page 293 ### Algebra 2

Book edition Middle English Edition
Author(s) Carter
Pages 804 pages
ISBN 9780079039903 # Simplify$\left(7+2i\right)\left(1-i\right)$

The simplified value of expression is $\left(7+2i\right)\left(1-i\right)=9-5i$.

See the step by step solution

## Step 1. Given Information.

Given to simplify the expression $\left(7+2i\right)\left(1-i\right)$

## Step 2. Explanation.

From the properties of complex numbers, ${i}^{2}=-1$

Using the above property,

$\begin{array}{l}\left(7+2i\right)\left(1-i\right)=7-7i+2i-2{i}^{2}\\ \left(7+2i\right)\left(1-i\right)=7-7i+2i-2\left(-1\right)\\ \left(7+2i\right)\left(1-i\right)=7-7i+2i+2\\ \left(7+2i\right)\left(1-i\right)=7+2-7i+2i\\ \left(7+2i\right)\left(1-i\right)=9-5i\end{array}$

## Step 3. Conclusion.

Therefore, The simplified value of expression is $\left(7+2i\right)\left(1-i\right)=9-5i$. ### Want to see more solutions like these? 