Suggested languages for you:

Americas

Europe

Q46.

Expert-verifiedFound in: Page 391

Book edition
Student Edition

Author(s)
Carter, Cuevas, Day, Holiday, Luchin

Pages
801 pages

ISBN
9780078884801

**Determine the best method to solve each system of equations. Then solve the system.**

**$\begin{array}{l}\mathbf{x}\mathbf{+}\mathbf{y}\mathbf{=}\mathbf{10}\\ \mathbf{x}\mathbf{-}\mathbf{y}\mathbf{=}\mathbf{18}\end{array}$**

The best method to solve the system of equations is **Elimination method. **The solution of the system of equations is $\mathbf{(}\mathbf{14}\mathbf{,}\mathbf{-}\mathbf{4}\mathbf{)}$.

The substitution method is used to find the set of solutions for the given system of equations. It is the method in which one variable is first solved in the form of another variable.

So, the value of one variable in the form second variable is put on the second equation. It will give the solution of the one variable. And then solve it for another variable.

The elimination method is the method in which addition or subtraction method is used to get an equation in the one variable.

If the coefficients are opposite, use the addition and when the coefficients are same, use the subtraction.

The given system of equation is:

$x+y=10$ … (1)

$x-y=18$ … (2)

The strategy is to solve the system of equations using the best method. Note that both the equations have $y$ in opposite signs, therefore, variable $y$ can be eliminated if both equations are added, therefore, the best method to solve the system is the elimination method.

$\begin{array}{l}\text{\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}}x+y=10\\ \underset{\xaf}{(+)\text{\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}}x-y=18}\\ \text{\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}}2x=28\text{Divide both sides by 2}\\ \text{\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}}x=14\end{array}$

Substitute 14 for $x$ into the equation (1) and solve for $y$.

$\begin{array}{c}x+y=10\\ \left(14\right)+y-14=10-14\\ y=-4\end{array}$

The solution is $(14,-4)$.

**The cost of two meals at a restaurant is shown in the table below.**

Meal | Total Cost |

$3ta\mathrm{cos}$, $2burritos$ | $\mathrm{\$}7.40$ |

$4ta\mathrm{cos}$, $1burritos$ | $\mathrm{\$}6.45$ |

**a. Define variables to represent the cost of a taco and the cost of a burrito.**

**b. Write a system of equations to find the cost of a single taco and a single burrito.**

**c. Solve the systems of equations, and explain what the solution means.**

**d. How much would a customer pay for $2ta\mathrm{cos}$ ****and $2burritos$****?**

94% of StudySmarter users get better grades.

Sign up for free