Suggested languages for you:

Americas

Europe

Q. 3 ACYP

Expert-verifiedFound in: Page 606

Book edition
Student Edition

Author(s)
Carter, Cuevas, Day, Holiday, Luchin

Pages
801 pages

ISBN
9780078884801

**Graph the function, and compare to the parent graph. State the domain and range.**

**$\mathit{g}\left(x\right)\mathbf{=}\sqrt{\mathbf{x}}\mathbf{-}\mathbf{4}$**

The domain of the given function is $\mathit{x}\mathbf{\in}\mathbf{[}\mathbf{0}\mathbf{,}\mathbf{\infty}\mathbf{)}$ and the range is $\mathit{g}\left(x\right)\mathbf{\in}\mathbf{[}\mathbf{0}\mathbf{,}\mathbf{\infty}\mathbf{)}$

__Parent graph__**: **The simplest form of the given function is called the parent function of that function and the graph of the parent function is called parent graph.

__Domain__: The set of all possible values for which given function defined is called domain.

__Range__: The set of all possible values of the given function is called range.

The given function is: $g\left(x\right)=\sqrt{x}-4$

In order to graph a function, find few co-ordinates by substituting values of ‘*$x$*’ and find finding the respective values of ‘$g\left(x\right)$'.

$\begin{array}{c}\text{For\hspace{0.17em}\hspace{0.17em}}x=0,\\ g\left(0\right)=\sqrt{0}-4\\ =0-4\\ =-4\end{array}$

$\begin{array}{c}\text{For\hspace{0.17em}\hspace{0.17em}}x=1,\\ g\left(1\right)=\sqrt{1}-4\\ =1-4\\ =-3\end{array}$

$\begin{array}{c}\text{For\hspace{0.17em}\hspace{0.17em}}x=4,\\ g\left(4\right)=\sqrt{4}-2\\ =2-4\\ =-2\end{array}$

$\begin{array}{c}\text{For\hspace{0.17em}\hspace{0.17em}}x=9,\\ g\left(9\right)=\sqrt{9}-4\\ =3-4\\ =-1\end{array}$

$\begin{array}{c}\text{For\hspace{0.17em}\hspace{0.17em}}x=16,\\ g\left(x\right)=\sqrt{16}-4\\ =4-4\\ =0\end{array}$

Values of ‘$\mathit{x}$ | Values of ‘$\mathit{g}\mathbf{\left(}\mathit{x}\mathbf{\right)}$’ | $\left(x,y\right)$ |
---|---|---|

0 | $-4$ | $\left(0,-4\right)$ |

1 | $-3$ | $\left(1,-3\right)$ |

4 | $-2$ | $\left(4,-2\right)$ |

9 | $-1$ | $\left(9,-1\right)$ |

16 | 0 | $\left(16,0\right)$ |

Plot these co-ordinates on a coordinate plane and join those points to get the required graph.

The parent function of $g\left(x\right)=\sqrt{x}-4$ is the simple square root function.

That is, $g\left(x\right)=\sqrt{x}$

The graph of parent function $g\left(x\right)=\sqrt{x}$ is given below.

__Note__: Since the parent function is just used for comparison, it is graphed using graphing calculator.

The graph $g\left(x\right)=\sqrt{x}-4$ is obtained by parent function is subtracted by ‘4’.

Therefore, the graph $g\left(x\right)=\sqrt{x}-4$ is translated(shifted) downward by 4 units from the origin, on comparing with the parent graph $g\left(x\right)=\sqrt{x}$.

Since ‘*$x$*’ is inside the root, the values inside the root must be positive.

Therefore, values of $x$ is all positive real numbers including zero.

That is, $x\ge 0,\text{\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}}\Rightarrow x\in [0,\infty )$.

Therefore, domain: $[0,\infty )$

In $g\left(x\right)=\sqrt{x}-4$ the square root of *x *is subtracted by ‘4’.

As square root is always positive, the least value it takes is zero.

Find the starting value of the function by substituting $x=0$ in $g\left(x\right)=\sqrt{x}-4$.

$\begin{array}{c}g\left(0\right)=\sqrt{0}-4\\ =0-4\\ =-4\end{array}$

Also, in $g\left(x\right)=\sqrt{x}-4$, coefficient of $\sqrt{x}$ is 1, which is positive.

Therefore, $g\left(x\right)$ takes all the real values greater than or equal to ‘$-4$’.

That is, $g\left(x\right)\ge -4,\text{\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}}\Rightarrow g\left(x\right)\in [-4,\infty )$

Therefore, Range: $[-4,\infty )$

94% of StudySmarter users get better grades.

Sign up for free